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1. Introduction

Software-defined radios (SDRs) have existed for
nearly 15 years [2,3]. About 7 years ago, researchers
came to realize that combining cognition with SDRs
was likely to yield far more flexible and powerful
radio systems [4]. Yet, as a research community,
we are still struggling to develop an understanding
of how best to combine cognition and SDRs. Cur-
rently, the community lacks either an architecture
or a reference implementation that is commonly
agreed upon. The problem is even more acute if
we focus our attention on SDRs used for data
communication.

The Adaptive Dynamic Radio Open-source
Intelligent Team (ADROIT) effort sought to begin
to change this situation. ADROIT worked on creat-
ing open-source SDRs for data communication and
demonstrating how to use cognition to manage
teams of these radios. Specifically, we sought to
achieve two broad goals:

� Enable cognitive radio teams. A cognitive radio
team is one where multiple highly-configurable
radios can intelligently and dynamically assemble
and configure themselves to meet the needs of a
particular application or suite of applications.
Central to this idea is the notion that applications
are cognitive and capable of adapting the radios’
behavior to best meet the applications’ needs.
Observe that the ADROIT definition of a cogni-
tive radio differs slightly from the classic defini-
tion of Mitola and Maguire [4]. In their
definition, cognition is internal to the radio. In
the ADROIT definition, the applications using
the radio (and cognitive controllers) are cognitive
and (potentially) self-aware, but the radio itself is
not necessarily cognitive. This difference implies
that the radio must expose its internal workings
such that the applications can manage the radio’s
behavior.
� Create an open-source real-time composable soft-

ware-defined data radio. SDRs have been in exis-
tence for several years. The benefit of SDRs is
that their behavior is programmable – new proto-
cols can be implemented by loading new soft-
ware, rather the replacing hardware.
In ADROIT, we sought to take these radios to
another level of flexibility. First, we wanted the
radio software to be open-source. Open-source
software is a well-known method to drive innova-
tions, and if we are to fully exploit the power of
SDRs, we need to make SDRs easy to acquire
and experiment with. The open-source approach
is the best path.
Second, we sought to make the radios compos-
able in real-time. Instead of the prevalent practice
of stopping the radio and loading new code to
change the radio’s performance, we sought to
allow the radio to change or evolve its behavior
while running. Real-time composability is essen-
tial for cognition, where the ability to swiftly
adapt to changing conditions is required.
Real-time composability also would appear to be
a meritorious goal in itself. A radio that can
reconfigure in microseconds is, intuitively, far
more powerful than one that reconfigures in sec-
onds. Furthermore, a composable radio enables
others to replace individual components and
use the rest of the system, thereby enabling
research while reducing the need to duplicate
existing work.

After briefly summarizing the past literature, we
use the rest of this paper to explain how we seek
to meet these two goals.

2. Prior work

The ADROIT effort is the beneficiary and out-
growth of two complementary research thrusts.
The first is the evolution from software-defined
radios (SDRs) to software-defined data radios and
the second is the emerging application of cognition
to network management and SDRs. We trace both
thrusts in the next two subsections.

ADROIT is also the beneficiary of substantial
work on open-source systems for radios and data
communications, in particular GNU Radio and
Click. As ADROIT enhanced both GNU Radio
and Click, it was more useful to present them in
conjunction with the enhancements and the discus-
sion of GNU Radio and Click is therefore deferred
until Section 4.

2.1. Software-defined radios and software-defined
data radios

The evolution of SDRs has generally followed
the evolution in the power of Digital Signal Proces-
sors (DSPs).

The first software radios emerged in the early
1990s as it became clear that DSPs had reached a
level of sophistication and performance such that
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they could process the output from (or input to) an
analog-to-digital-converter in real time. DSPs with
this level of performance permitted radios whose
waveforms could be changed by simply altering
the DSP’s software. The result was a series of
radios, beginning with SpeakEasy [3], then the Joint
Tactical Radio System (JTRS) [5] and the Vanu
radio [6], that realized a modular radio, capable of
mimicking the over-the-air behavior of existing
radios (e.g. push-to-talk handsets, cellular phones
or FM radios) or implementing new waveforms.

As DSPs have become more powerful, and as
better hardware developed for frequency selection,
the range of potential capabilities of the software
radio expanded. It became possible around 2000
to imagine radios that dynamically scanned the
spectrum, looking for available capacity (e.g., the
Next Generation [XG] radio research project at
DARPA [7]), or simply trying to understand how
the spectrum was being used (e.g., the WolfPack
program at DARPA [8,9]). The central idea was
that the radios would change their behavior based
on current spectrum conditions.

In the past few years, there has been an addi-
tional step. Fast, inexpensive embedded processors
have allowed not only the radio frequency and
waveform to be programmable, but also the data
communications media-access protocol layered on
top of the frequency and waveform to be program-
mable too. The result is a software-defined data
radio. The idea is to view data communications pro-
tocols such as 802.11 and TCP/IP as fungible proto-
cols, whose behavior is adjusted (or completely
reworked) according to current needs. ADROIT
takes this idea one step further by viewing the entire
protocol stack as fungible; it is assembled in the
form needed by the applications currently using
the radio.

2.2. Combining cognition with network management

and software radios

The other research thread influencing ADROIT
is the desire to combine cognition with network
management and with software radios.

Network management, at its core, is the process
of making sense of a vast amount of information.
An individual device may make thousands of vari-
ables visible at any time. A single link may see mil-
lions of packets per second. Then, once the
condition of the network or its components has
been assessed, a manager must determine which of
thousands of configuration options to adjust in
order to improve performance or repair a fault.

This kind of environment is generally viewed as
ideal for cognitive tools, which do much better than
people at juggling hundreds or thousands of vari-
ables. There have been suggestions to embed cogni-
tion into network management [10], as well as
efforts to allow cognitive entities to mediate between
applications and a balky network [11,12].

There has also been a recognition that cognition
is extremely well-suited to network management of
SDRs. The XG project found that cognitive tools
were essential to allowing the radio to decide which
frequencies were free and how to best exploit them.
(Part of the issue for XG was that the availability of
a frequency was determined not just by what traffic
could be found at that frequency, but also by a com-
plex set of FCC rules dictating how the frequency
could be used.) In an experiment at BBN, we found
that a cognitive tool using genetic algorithms was
far better at configuring a software radio with over
a thousand configuration options than the best-
trained radio engineers.

ADROIT has built the initial parts of a software-
defined data radio that is intended, from the start,
to be cognitively-controlled.
2.3. Terminology

One thing about software radios that has not
fully evolved is the terminology. However, some
researchers (see, for instance [13]), have begun to
make a distinction between software-defined radios,
in which most signal processing is done in hardware
configured by software, and software radios, in
which most signal processing is done in software.
In this paper, we use the two terms inter-changeably
to mean a radio in which most or all signal process-
ing is done in software. We further enhance the con-
cept with a software-defined data radio in which both
signal processing and higher layer protocols are
done mostly or entirely in software.
3. The ADROIT approach

Reflecting the two research thrusts that have
influenced ADROIT, our approach focused on
two central ideas.

First, we set out to make the ADROIT software
radio composable. To achieve this goal we first inte-
grated and enhanced two existing open-source
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systems, GNU Radio and Click, as described in Sec-
tion 4.

The second central idea was to ensure that the
radio can be cognitively controlled. In ADROIT,
this means that modules of the object may be mon-
itored and adapted in rich, real-time manner. Fur-
ther, behavior can change within one radio, or
across a team. Cognitive control required the crea-
tion of several mechanisms to manage the compos-
able software and radio hardware.

ADROIT needed a consistent way to model all
the components of the radio. This model is
described in Section 5.

Reconfiguration consists of selecting the best
components for the current task. (In ADROIT, we
use the term ‘‘reconfiguration” rather than ‘‘config-
uration” to emphasis that the configuration is
dynamically changing.) Reconfiguration is managed
by a Reconfiguration Manager, described in Section
6.

Adaptation is a collective activity, in which (both
cognitive and non-cognitive) components of the
radio decide how best to tune parameters in the cur-
rent configuration. Because the tuning is collective,
it is essential that all components have a shared view
of the radio’s operation. Providing that shared view
is the job of the Broker, described in Section 7.

Finally, because ADROIT seeks to create radio
teams, we needed to add some team infrastructure
to ensure communication and security. This infra-
structure is discussed in Section 8.

4. Creating a composable software-defined data radio

Central to ADROIT is the idea that the radio is
composable. In the ADROIT context, this means
that the radio is made up of a collection of code
modules which can be dynamically inserted and
removed from the running configuration as needed.
Our goal was to make modules represent small units
of functionality. For instance, a module might rep-
resent a round-trip time estimation routine or a
checksum routine.

As we worked through the design of the system,
it quickly became clear that modules needed to be
typed. For example, if we have two round-trip time
estimation routines, one based on mean deviation
and the other on standard deviation [14], there
needs to be some way to say that both modules take
the same inputs and do the same thing, just using a
different algorithm. Object classes with inheritance
solve this problem nicely.
Having conceptually made all code modules into
typed objects, we then needed to solve the problem
of how to think about connections between mod-
ules. The issue is that the data entering and exiting
an object is not only typed, but that only certain
types of objects should interchange data. In
ADROIT, we solved this problem by defining the
notion of an object dependency, which simply states
that to function correctly, an object depends on the
presence of certain object types.

This definition of object dependency could be
viewed as hindering reconfigurability, as the types
must be compatible. Our view is that by defining
types we make reconfigurability easier, as modules
written without regard to type rules will almost cer-
tainly not interoperate. The art of object depen-
dency rule design is specifying enough to ensure a
reasonable degree of interoperability while leaving
enough flexibility to permit experimentation and
new designs. It seems likely that fine-grained defini-
tions like round-trip time estimators that are given
information about timing and can be asked for esti-
mates will be useful, but also that some alternate
protocol implementations might replace large num-
bers of objects surrounding such an estimator, meet-
ing only data send and receive interfaces to the
application layer and MAC layers.

Given this model, the next concern was how to
implement it in an open-source environment. We
could have simply sought to build yet-another
open-source system, but our preference was to lever-
age existing work. In particular, we were committed
from the start to working with GNU Radio. GNU
Radio already had a functional model very close to
this model, with the notion of processing blocks
(modules) and typed ports (dependencies) connect-
ing blocks.

Additionally, after some study of the open-source
implementations of higher protocol layers it became
clear that the Click modular router [15] fit the need.
Click implements protocols that sit above GNU
Radio and had a compatible architecture (namely
an emphasis on small code modules and typed ports,
and the ability to insert and remove modules at run
time). The next few subsections discuss how we
added to these software packages to meet the needs
of a composable software-defined data radio.

4.1. An overview of GNU Radio

GNU Radio is an extensible free software frame-
work for the creation of software radios. The GNU
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Radio framework also incorporates software that
supports the easy integration of a number of hard-
ware modules so that radio signals may be received
from, transmitted to, or exchanged with other GNU
Radio-based software radios or conventional radio
systems.

GNU Radio uses a modular, block-based archi-
tecture with a hybrid Python/C++ programming
model. The combination of Python and C++ pro-
vides a convenient and high performance platform
for developers to use in the development of software
radio systems. Functionality that requires CPU-
intensive processing is implemented in C++ for
high performance, while functionality that involves
complex interactions between blocks is implemented
in Python [16].

One of the features of the GNU Radio frame-
work is an extensive library of pre-defined and
tested functional blocks. These blocks provide sig-
nal processing functionality, encapsulate sources
and sinks of data, and provide simple type conver-
sions. The blocks are written in C++ and typically
have an automatically generated Python ‘‘wrapper”

or interface that allows them to be manipulated,
connected and utilized in Python. New blocks can
easily be added to the block library; indeed the
GNU Radio community strongly encourages the
addition of new blocks implementing new function-
ality or improved performance.

GNU Radio processing blocks may be hooked
together and run from a Python program. The
Python program provides a framework for the
processing blocks to communicate via buffers. It
also provides a simple scheduler whereby the var-
ious processing blocks making up a radio trans-
mitter or receiver are executed sequentially
depending on the availability of inputs to the
block.

A GNU Radio software radio typically consists
of the following elements:

� Sources: A GNU Radio software radio will have
at least one source. Each source is the head of a
processing chain or flow_graph. An example of
a GNU Radio source is the Universal Software
Radio Peripheral (USRP) radio. This is a radio
front end that connects to a computer via USB
2.0. GNU Radio has integrated support for con-
figuring and using the USRP.
� Sinks: A GNU Radio software radio will have

at least one sink. Each sink is the tail of a
flow_ graph. An example of a sink is a sound card.
� Flow graphs: A GNU Radio software radio will
have a flow_graph that links together each source
and sink pair as well as any intermediate blocks
that are required to transform the data stream
from a source into a format that is understand-
able by the sink. For example, converting an
FM radio signal that is received by a USRP into
an audio signal that can be played through a
sound card.
� Schedulers: A scheduler is associated with each

active flow_graph. Each scheduler is responsible
for moving data through its flow_graph. A sched-
uler iterates through the blocks in a flow_graph,
identifies blocks that have sufficient data on their
input(s) and sufficient space on their output(s) to
be able to process data. It then triggers the pro-
cessing function for those blocks. The scheduler
in the current GNU Radio system relies on a
steady stream of data input to the collection of
blocks to cause the blocks to run and produce
output.

The GNU Radio framework provides an excel-
lent environment to create and run complex signal
processing functions, and to connect them to the
RF world. GNU Radio has already demonstrated
its expressiveness and versatility by rapidly imple-
menting a number of very complicated signal pro-
cessing programs, such as a High Definition
Television (HDTV) receiver. GNU Radio provides
a strong foundation for radio development that is
enabling academics, industry, and hobbyists to col-
laborate and innovate effectively.

4.2. Enhancing GNU Radio

The ADROIT effort, in conjunction with the
GNU Radio team, is extending the system to better
support data communications. There are only a few
proposed extensions to GNU Radio, but they are
important for packet radio.

The Media Access Control (MAC) layer needs
low-latency transmission control. Many MAC func-
tions (such as placing a packet in a TDMA slot or
responding to a Request-to-Send) are real-time
and may have to be handled faster than the
FIFO-based processing currently implemented in
GNU Radio flow_graphs permits.

To meet this need, our extensions allow a flow to
execute to fill a buffer, so that the sample data is pre-
computed and ready to go upon receipt of a signal.
The extensions implement a signaling mechanism
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that quickly delivers signals to the processing
blocks, either from other blocks or from programs
running outside the GNU Radio context. Some
MACs require tight timing and time-tagging, and
that capability is provided by the proposed
extensions.

Another enhancement reflects the fact that higher
layers like to track and operate on collections of
bytes together, and in hierarchies of collections.
The network layer thinks of ‘‘packets”, and the link
layer considers ‘‘frames”, either of which may be
composed of multiples of the other. The extensions
incorporate the ability to manipulate and tag buffers
to meet those needs.

Transmission priority is also of concern to the
network and link layers. Quality of Service imple-
mentations allow the network to match interfaces
with different bit rates and loading to each other,
as well as allow higher-priority packets to get
through, even though lower-priority packets arrived
at the interface earlier. This priority needs to reach
down all the way to the transmitter in order to sat-
isfy the latency needs of the network layer. If not
accounted for by the physical layer, a large lower-
priority packet already in transmission, for exam-
ple, might occupy the channel, preventing a higher
priority packet from being transmitted in a timely
fashion.

The extensions extend the GNU Radio stream-
based paradigm to allow metadata to be associated
with data and transported as discrete messages of
information. The architecture defines a standard
format for the metadata and provides functionality
to generate, transport, manipulate and parse this
information.

The extensions also include a new type of GNU
Radio block. We call this block a message-block
(or m-block). Information flows into or out of m-
blocks as messages that flow into or out of bi-direc-
tional m-block typed ports. These messages may
communicate data, metadata, control information,
status information, signals, or a combination. The
m-blocks process any control or signaling informa-
tion that is sent to them and transform any data
using information supplied within the associated
metadata. Each port has an associated protocol
class that specifies which messages may pass into
or out of that port. This port typing ensures that
only compatible ports are connected together.

The extensions support the needs of time-knowl-
edgeable, priority-based scheduling required for
processing m-blocks, as well as reconcile the
interoperation between current GNU Radio
flow_graphs and the new m-blocks. This is achieved
through the use of m-blocks and a hierarchical,
quasi-real-time, hybrid scheduling scheme.

The scheduling algorithm is priority-based. Each
m-block is assigned a priority which is equal to the
priority of the highest priority message in its input
buffer. The scheduler determines which m-block
possesses the highest priority and then dequeues
the highest priority message.

4.3. An overview of Click

Click is software for a modular router. Its basic
architecture is crisply summarized by its designers:

‘‘A Click element represents a unit of router pro-
cessing. An element represents a conceptually
simple computation, such as decrementing an
IP packet’s time-to-live field, rather than a large,
complex computation, such as IP routing. A
Click router configuration is a directed graph
with elements at the vertices. An edge, or connec-

tion, between two elements represents a possible
path for packet transfer. Every action performed
by a Click router’s software is encapsulated in an
element, from device handling and routing table
lookups to queuing and counting packets. The
user determines what a Click router does by
choosing the elements to be used and the connec-
tions among them.” [15]

From ADROIT’s perspective, this is precisely the
modularity of implementation that we seek for
upper layer protocols in a software-defined data
radio.

The challenge in Click is that Click is designed to
implement a router. In one way, that is a good
thing. In many types of radio networks (most nota-
bly ad hoc networks and sensor networks), every
radio is potentially a router or bridge. Indeed, other
researchers have worked to enhance Click’s soft-
ware to support wireless routing [17].

However, Click is structured in the expectation
that the mechanics of receiving, transmitting, and,
to a large degree, the processing of media layer
packets is handled by a piece of hardware, man-
aged by a device driver. In ADROIT, however,
that’s not true. MAC protocols, in all their rich-
ness, are typically modularized just as Click modu-
larizes the Internet Protocol. So ADROIT needed
to insert the concept of a software MAC layer into
Click.
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4.4. Enhancing Click and creating a software MAC

layer

The straightforward approach is to create APIs
for a software MAC layer and then adapt Click to
use that API. That is broadly the approach
ADROIT has taken, with two exceptions.

First, ADROIT defines two APIs: an API for
Click to use to talk to the MAC layer, and an
API for the MAC layer to talk to the (GNU) Radio.
In between the two APIs, implementers can write
software for any MAC they wish.

Second, ADROIT implements a model MAC
layer. A slight surprise was that the rational plat-
form for such a model MAC layer was Click! It
turned out that most of problems of implementing
a MAC protocol are similar to those of an internet
protocol, and so Click mostly contains the correct
programming abstractions.1

So, in the end, Click was enhanced two ways.
Two new APIs were added, and Click was enhanced
to support software MACs.

4.4.1. Replacing one API with two

Click has an interface for devices. Packets to be
sent are given to the ToDevice element and arriving
packets are pushed into the system by the FromDe-

vice element. The two elements are the effective API
to the device drivers.

ADROIT replaces this model with two APIs. The
MAC-Subnet API connects the subnet layer (what,
in Click, currently sits above the {From/To} Device)
elements to the modular MAC layer. The Radio API
connects a media access layer (MAC) with the radio
channel(s) it needs to transmit and receive on. The
Radio API is the boundary between Click and
GNU Radio.

Working through the Radio API, a media access
protocol, can pass protocol and user data to the
radio device for transmission over the air; accept
data received by the radio device; obtain informa-
tion about the operational status of the radio device;
and control the operation of the radio device (on a
per-packet basis only).
1 One incompletely solved issue is real-time actions, such as
sending an ACK to an 802.11 DATA packet, an event that
must happen in a very narrow time window that may be faster
than Click can respond. One solution is to push certain real-
time response problems down into the Radio layer. Real-time
m-blocks could be supported in the DSPs or even in (run-time
programmable) FPGAs.
The Radio API is conceptually a tiered interface.
There are three tiers:

� Radio: The entire radio.
� Phy: A Physical layer realization (fully defined in

terms of frequency, encoding and modulation). A
Phy is viewed as being owned by a particular
MAC. Multiple Phys may have the same settings.
� Frame: A single logical transmission unit. A

frame is transmitted or received over a particular
Phy.

Operations may occur at any tier, although cer-
tain operations (such as turning the radio on or
off) make sense only at particular tiers.

Broadly, operations come in two forms:

� There is a collection of operations to transmit or
receive a frame over a particular Phy. This inter-
face is largely intuitive, with one possible sur-
prise: it is possible to temporarily change Phy
properties for the lifetime of a frame’s transmis-
sion. For instance, one way to implement spread
spectrum is to specify the transmission frequency
separately for each frame.
� There is a collection of operations, largely rele-

vant at the Phy and radio level, to learn about
and manage the state of the radio.

The Radio API interface is asynchronous. Differ-
ent operations in the radio may take differing
amounts of time, so operations may be completed
in an order different from the order in which they
are invoked.

The MAC-Subnet API seeks to reflect a concep-
tual shift that occurs fairly low in the network stack,
namely the distinction between media access and
subnetwork access. Media access is the process of
using the medium (in this case RF) to transmit
and receive frames of data. Subnetwork access
encompasses the larger problem of routing among
a set of (reasonably) homogenous nodes in a net-
work. This distinction is perhaps most clear when
thinking of Ethernet. The media access layer trans-
mits and receives Ethernet frames. The subnetwork
layer implements Ethernet bridging.

In its current form, the API is simple. It links one
MAC layer to one subnetwork layer. So, for
instance, we cannot use a subnetwork layer to
bridge between different MAC layers. (The expecta-
tion is that this model will be enhanced in later
versions of ADROIT.)
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The MAC layer is responsible for transmitting
and receiving frames and for tracking the quality
of connectivity to neighbors. The MAC makes
information about neighbors available to the Sub-
net layer. The MAC is also responsible for manag-
ing buffer memory and notifying the Subnet layer
when buffering is in short supply.

Abstractly, the Subnet side of the API is even
simpler. The Subnet layer simply provides two
primitives to the MAC layer to help the MAC layer
in the transmittal and receipt of messages. In partic-
ular, the MAC may ask the Subnet layer which of
the radio’s neighbors need to acknowledge receipt
of a frame, and the MAC may ask if a frame just
received is actually for this radio. These primitives
enable support for bridging (the radio can accept
a frame not addressed to it, and relay the frame
on) as well as multicast and anycast addressing
(where whether the radio is a member of the multi-
cast or anycast group is relevant as is knowing
which neighbors should receive the multicast or
anycast transmission).

4.4.2. A modular MAC layer

Between the MAC-Subnet API and the Radio
API is a modular MAC layer. In principle, a
MAC layer can have arbitrary structure while meet-
ing the two APIs. Because ADROIT seeks to ease
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The modularity we chose is shown in Fig. 1. A
key goal is to accommodate a wide-range of MACs.
Replacing one MAC with another should be possi-
ble by rewriting as few modules as possible.

A brief description of the functions of each mod-
ule follows. These functions encompass the general
function of each module and are open to further
development. In addition, as shown in Fig. 1, some
functions (or groups of functions) of the modules
are represented as sub-modules for improved clarity
of presentation:

� Channel Access (CA). This module contains
functionality required to transmit, receive and
generally be the point of contact for the radio
device. It interacts with the radio device through
the Radio API and is the final/first point of exit/
entry of over-the-air frames out-of/into the MAC
layer. Received frames are processed and dis-
patched to the pertinent modules. In general, all
controls that need to be done ‘‘close to the radio”

are candidates for being here.
� Floor Acquisition and Control (FAC). This mod-

ule contains all of the functions necessary to
resolve contention for the channel. It includes
Reliability control and Queueing
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sending, receiving and processing control mes-
sages (e.g., RTS/CTS/slot-information) and com-
puting deference durations (e.g., NAV/slot
allocation). It also controls the nature and dura-
tion of floor acquisition, deciding, for instance,
whether or not use ACKs, RTS/CTS, or how
many DATA packets to send in the burst. It
obtains frames from the Reliability and Queuing
module when necessary (e.g., when floor is
acquired) and passes the frame to the CA module
for transmission. In sum, this module manages
distributed resource allocation of the shared
channel.
� Reliability control and Queuing (RQ). This mod-

ule contains all of the functions needed to pro-
vide reliable packet delivery, and for doing class
based priority queuing of outgoing packets. An
alternative design would be to place Reliability
and Queuing in separate modules. Because many
reliability schemes (e.g., ARQ) store packets in
queues, the interfaces between separate Reliabil-
ity and Queuing modules are fairly rich, and it
is difficult to specify a complete yet flexible
abstract interface. It is expected that particular
MAC implementations will have abstraction
boundaries between Reliability and Queuing,
and with more experience we may be able to sep-
arate these modules. Forward Error Correction
(FEC), MAC-layer retransmissions (ARQ) and
related functionality are to be placed in this mod-
ule. Queuing disciplines and head of line
unblocking are also included in this module. This
module is also charged with creating a frame of a
given size upon request from the FAC module.
� Subnet Interactions (SI). This module is respon-

sible for all interactions with the subnet layer. As
such, it is the coordinating stop for all calls by the
subnet layer. It implements these calls by send-
ing/receiving packets and communicating with
other modules to implement certain interfaces.
In the reverse direction, it handles all of the inter-
face calls to the subnet layer on behalf of the
other modules. This module also performs seg-
mentation of packets and reassembly, if required.
� Neighbor Statistics Aggregation (NSA). This

module collects, aggregates, processes and makes
available summary information for use by other
modules. It may use sent data and control
frames, received data and control frames, or
any other activity. Examples include the number
of retransmissions per neighbor, the average sig-
nal strength of a frame from a given neighbor,
the average load or utilization, the average queue
length, and error rates. The MAC architecture
allows a high degree of flexibility in the amount
of processing done on the basic observations –
from just aggregating and providing raw data,
to smoothing, filtering, estimation and calculat-
ing a metric. The NSA module provides an inter-
face through which any module can query for the
statistics of a link.

5. Modeling the radio for higher layers: an informal
object model

We do not want applications to have to know the
innards of GNU Radio and Click to be able to man-
age or change the radio’s behavior. To solve this
problem for ADROIT, we created an abstract
model of the radio.

Most scenarios seemed best solved by treating
the radio and its applications as a collection of
objects. Configuration is the best example: if we
can think of each software or hardware module as
an object with dependencies, building a functional
configuration becomes largely a matter of satisfying
dependencies across all the objects in a configura-
tion. Similarly, the thousands of variables we need
to track for network management are organized as
attributes of objects, where the objects are part of
a type hierarchy.

The ADROIT approach has been to tread
lightly. The radio is modeled as a collection of
objects. The requirements on objects are quite light,
allowing considerable implementation flexibility
under an object-oriented veneer.

The basic object model has five components:

� Type: A definition of a particular category of
module or module that implementers can map
their code into. A type is used to characterize a
set of services that may be offered by implemen-
tations of that type.
Types use inheritance and types may have more
than one parent type. Types may also have more
than one implementation or realization in a
system.
� Dependency: A statement that an object must be

connected to another object of a particular type
to operate correctly.
� Parameter: A visible attribute of an object. The

parameters of an object are defined by the
object’s type.
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� Implementation: A realization of a particular
type. A specific piece of code that ‘‘implements”,
or ‘‘is a”, or ‘‘complies with” a Type. An imple-
mentation makes the services and parameters
(defined by its type) available.
� Invocation: Actual running instance of an imple-

mentation. More than one invocation of an
implementation may be active in a configuration.

This structure neatly solves several problems. For
instance, it groups parameters into clusters of well-
defined objects. It also expresses the modes in which
an object may exist (an abstract type, a realization
that can be run, the realization that is current run-
ning) and gives us a way (via their type) to quickly
identify related implementations or invocations.

6. Managing configurations: the Reconfiguration

Manager

The role of the Reconfiguration Manager is to
create configurations that can be executed on the
radio, as well as to start, stop, or change the running
configuration. Another useful way to think of the
Reconfiguration Manager is that it is the part of
the system responsible for controlling how objects
transition from implementations to invocations
and back.

To perform its functions, the Reconfiguration
Manager expects that every object implements the
following basic functions (either directly or through
a proxy):

� Run-time control: An implementation may be
started and thus create an invocation. An invoca-
tion may be stopped, paused or resumed.
� Dependency resolution: Objects know their

dependencies and accept instructions as to how
they are to be interconnected in the current
configuration.
� State transfer: In some situations, invocations

hold state information that, for consistency, must
be transferred if the invocations are replaced with
new invocations.

7. The Broker: enabling information flow for

cognition

The Broker serves as a open communications
path between objects in the ADROIT system. The
idea is that anyone or anything that wishes to
observe, monitor, or change the state of an
ADROIT radio will do so via a command relayed
by the Broker. Furthermore, the Broker will notify
interested parties of any changes in the radio’s state
or configuration. In almost all cases, this involves
reading, writing or tracking the value of one or
more parameters.

The Broker solves a scaling problem. If there
were no Broker, then the addition of a new object
could create the need to update every existing object
to interface with the new object. This is the classic
mxn problem [18] and its solution is to provide a
common interface (the Broker), to which every
object (new or old) must connect.

Beyond passing commands, the Broker acts as a
switchboard and a directory. Entities need know
only the name of the invocation whose parameters
they wish to update and the Broker will find the
invocation and make the change. The Broker main-
tains a directory of all implementations that are
available for use (see Fig. 2).

To perform these services, the Broker implements
a relatively rich interface that contains operations to
perform the following functions:

� Directory services: Implementations and invoca-
tions register themselves with the Broker. The
Reconfiguration Manager places a copy of the
current system configuration in the Broker. It is
possible to ask the Broker to search for active
invocations based on their implementation
or type. One can also ask for the current config-
uration, showing how the invocations are
interconnected.
� Parameter management: The Broker views every

invocation as containing a suite of parameters.
These parameters may be read, monitored (e.g.,
to determine if they change to a value outside
expected limits), and some may be altered (to
change system behavior). As part of the directory
services, it is possible to ask for the list of param-
eters associated with an invocation. The Broker
also defines an interface for communication with
invocations to read, change, or reset the values of
parameters.
� Configuration management pass through: The

Broker is not responsible for configuration man-
agement. However, since so many of the Broker’s
clients need to know the configuration and also
for simplification of APIs, the Broker maintains
a pass-through interface, in which requests
regarding configuration (including checking the



Network
Layer

   to modules and parameters

 –Pass through of Reconfig
  commands

 –Note: Broker–broker
  communication with other
  nodes

Broker

Re/Setting Values

Observing Parameters

Get Configurations
Invoke Modules

Remove Modules

Cognitive
Layer

Controls run–time
execution order

Re/Setting Values

Registering Modules

Observing Parameters

Reconfiguration Manager

Network
Module

N
et

w
or

k
M

od
ul

e

Get Configurations
Invoke Modules
Remove Modules

Requesting Modules,
Parameters and

Properties

 –Pass through of set/get
  values

 –Sets up notifications of
  events

  poll, value–change, threshold)
 –Sets up event monitoring

 –Assigns unique handles

Fig. 2. Broker’s role as a system bus, relaying commands and information among its clients.

908 G.D. Troxel et al. / Computer Networks 52 (2008) 898–911
viability of proposed new configurations) are
passed through to the Reconfiguration Manager.

8. Infrastructure for radio teams

Given modular software, a Reconfiguration
Manager to manage the radio’s configuration, and
a Broker to ensure coordination, we have all the
components needed to build an agile, cognitive soft-
ware-defined data radio. ADROIT’s goals go
beyond enabling single radios. We seek to build
(cognitive) radio teams. To enable radio teams, we
need to add two mechanisms: a coordination chan-
nel and a security model.

8.1. A coordination channel

Suppose we turn on a group of radios in a region.
How do the radios find each other? How do they
coordinate?

It would be nice to imagine that the radios could
dynamically search the spectrum and find each
other. But, so far, no solution exists for the dynamic
discovery problem. So ADROIT does what every-
one else does: it defines a small bit of dedicated spec-
trum to use as the coordination channel (in
ADROIT, we call it the orderwire).

Radios discover each other via the orderwire and
are then free to use the orderwire to negotiate to use
other frequencies for communication. Even if
another communication frequency has been negoti-
ated, radios must periodically check the orderwire
for newly arrived radios that wish to join the team.

It may seem wasteful to permanently allocate
spectrum to the orderwire. Studies suggest, how-
ever, that if the orderwire is used wisely, the
improved spectrum utilization that SDRs can
achieve by coordinating usage outweighs the loss
of bandwidth due to the allocation of the order wire
[19].

8.2. Security model

Just because a radio begins to use the local order-
wire does not mean that the radio should be permit-
ted to join a given radio group. How does a radio
group distinguish between radios that it should
admit to the group and those it should not? And
how does the team protect itself against hostile
radios?

ADROIT (at least for the moment) has decided
to focus on problems of radios that try to join teams
they are not authorized to join and radios that do
join and then seek to subvert a team. Jamming
can be addressed with anti-jam waveforms, or by
treating jammers as interfering signals and seeking
a new system configuration that avoids them.

The ADROIT security model is simple. Every
radio carries signed public key certificates from
one or more authorization authorities. Initiators

are radios whose certificates’ attributes includes
the ability to define a team, where a team is defined
by the characteristics of the radios allowed to join it.
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So, a radio can join a team if it has a certificate
issued by the team’s initiator; admission can also
be contingent on holding other, pre-existing attri-
bute certificates as defined by per-team policy. Fur-
thermore, members of a team may define their own
multicast groups within the team, with admission
defined by a separate subteam roster. Thus commu-
nications, even within the team, can be kept to a
‘‘need to know” subgroup.

9. Cognitive teams

Having discussed all the components of an indi-
vidual ADROIT radio, it is now time to look at cog-
nition and how ADROIT enables cognitive teams.
We should emphasize that this section, in particular,
discusses work in (early) progress. Creating cogni-
tive radio teams in the style ADROIT envisions is
very much a research challenge.

9.1. The cognitive layer on each node

ADROIT explicitly seeks not to favor one mode
of cognition over another and, indeed, seeks to per-
mit multiple modes of cognition to coexist on a sin-
gle node. As part of this mindset, ADROIT thinks
of cognition not as being resident in a particular
entity or application but rather in a cognitive layer
where multiple cognitive applications may co-exist.

An implication of this design is that ADROIT
radio teams will be heterogeneous in cognition.
Even if all radios are running ADROIT software
on the same hardware, their cognitive layers may
contain different cognitive applications.

9.2. Multi-node coordination

Because the (independent) cognitive layers of dif-
ferent nodes will be changing parameters and net-
work configurations dynamically, a very real risk is
that applications will be unable to communicate.
Different applications will have communication
requirements and expectations they impose upon
the broader network – such as the receive frequency,
the transmit frequency, the expected header format,
the maximum header size, the retransmission
scheme, the backoff protocol, the acknowledgment
protocol, the unicast/broadcast assumption, quality
of service needs (e.g., projecting forward), and reser-
vations (block off resources). These requirements
may conflict, both within a node (where they will
presumably be swiftly detected) and also between
nodes (where multi-node coordination will be
required).

As a result, each ADROIT node will have a
Coordination Manager responsible for maintaining
inter-node coordination. Coordination is the act of
managing interdependencies between activities [20].

In this environment, the cognitive layer must rea-
son about what is currently being applied within the
node, assess the likelihood that it will significantly
impact neighboring nodes, and then ask the Coordi-
nation Manager to manage the interdependencies.
The Coordination Manager must also be able to
robustly handle the change over. No change in pro-
tocol, module, or parameter setting should cause sig-
nificant long-term adverse effects in the network.

Note that coordination may be regional; i.e., it
does not need to apply to the entire network. Regions
may be defined in different ways, including geograph-
ically, by task, or by organizational hierarchies. For
example, all sensors may be communicating on
Channel A, while all people are communicating on
Channel B. A possible network might include one
or more nodes that serve as communication bridges,
running multiple protocols (one for each region).

One consideration is that the orderwire band-
width will be limited, and may have to be shared
among a number of radio teams. Our assumption
is therefore that we would like to keep coordination
traffic between Coordination Managers modest.

One approach to minimizing cross-node commu-
nication is to bookmark safe states. That is, the cog-
nitive layer tracks the performance of the node and
network, and keeps a list of previously experienced
working configurations (potentially sorted by their
successfulness). When the cognitive layer changes
a parameter that causes the network to stop func-
tioning correctly (or to dramatically reduce perfor-
mance), it can return to the bookmarked state. If
a bookmarked state no longer performs well, then
it is likely that other nodes have changed their con-
figurations for unsafe values, or that the environ-
ment has changed dramatically. In these cases, the
Coordination Manager can resort to the orderwire
to re-coordinate, perhaps asking all nodes to return
to a bookmarked state.

An alternate approach is to support inter-node
negotiation. Negotiation is the communication pro-
cess used by a group of agents in order to reach a
mutually accepted agreement on some matter [21],
and is a vibrant area of Artificial Intelligence
research [22–24]. We assume that the Coordination
Manager will negotiate over the orderwire unless
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alternative communication regions can be easily
identified. A research issue lies in deciding what
terms to negotiate.

A third approach is to develop a handshake
mechanism (deadlock-free) that allows two different
nodes to synchronize changes.

Duplication approaches may also be appropriate
for certain classes of changes, in which a change
results in both protocols being applied until it is
clear that both sides have changed protocols. This
approach may apply in some cases (e.g., a change
in header size), but not in others (e.g., for trans-
mit/receive frequencies).

We have discussed four methods for coordina-
tion. Bookmarking can be useful for returning to a
working configuration, but is not a full solution.
Negotiation can be used to agree on a new plan,
but cannot ensure that the plan will be successful.
Both handshaking and duplication can be used to
effect transitions from one configuration to another.
We expect a complete system to use at least book-
marking, negotiation, and handshaking. It is not
yet clear whether duplication is on balance a useful
strategy.

Local decisions are simpler, but restrict the sys-
tem to choices which preserve global interoperabil-
ity. Distributed agreement enables choice among
options which are not interoperable, and this is
potentially more powerful.

9.3. Information sharing

In addition to basic coordination, nodes may
need to (or desire to) share information. For exam-
ple, if two nodes have explored different parts of the
environment (either geographical or communica-
tions), they may wish to share their observations.
We want to have the ability for a cognitive layer
to be able to receive information from multiple
nodes, identify appropriate patterns and issue
appropriate reconfigurations – both within and
across nodes, as needed. A key research interest is
to identify meaningful patterns of behaviors across
the network and choose the right response for multi-
ple nodes.

The Coordination Manager will decide what infor-
mation to share across nodes, and when to share it.
Information could include current configurations,
local observations, or current models. To calculate
what information to share, we will use an estimate
of information benefit that manages temporal decay,
context- and task-sensitive importance of the data,
and monitors the effect of sharing information on
overall performance, as in [22,25,26]. To calculate
the cost of information, we will monitor the additional
overhead caused by information sharing, and esti-
mate cost proportional to available resources. The
Coordination Manager will combine these two mea-
sures to effectively evaluate the utility of information

sharing, thereby sharing relevant information when
network resources are available.

The Coordination Manager may also decide
which module(s) are to perform particular computa-
tions. For example:

� The Coordination Manager could select one
node to compute the region-wide Quality of Ser-
vice and select a common communication fre-
quency for all nodes in that region. In this
situation, all nodes must send their events to
the selected node for processing. This approach
is generally easy to implement, may reduce com-
munications, but may be less fault-tolerant.
� The Coordination Manager could choose to dis-

tribute a task over multiple nodes so that all cogni-
tive layers take shared responsibility for observing
patterns and making decisions regarding that task.
While more robust to node and communication
failures, it may be difficult to decompose the task.

10. Conclusion

Much of ADROIT’s work has been incorporated
into GNU Radio. As an open-source effort,
ADROIT expects many of its features to evolve
and mutate as new parties contribute their code
and ideas to the effort. So any conclusions are nec-
essarily preliminary. Nonetheless, we offer a few.

First, one of the challenges is finding multi-lay-
ered structured aggregates to represent (or contain)
large numbers of smaller objects. For instance, we
wanted the network code to contain lots of small
modules to perform functions such as decrementing
a time-to-live field, or computing a checksum. Yet,
as the discussion of the MAC sub-layer shows, we
also wanted to clump those modules into larger
units of operation. Similarly, in GNU radio we
found the need to create m-blocks to handle aggre-
gations of data. To avoid the disaster of thousands
of parameters in a flat space, we placed them in the
context of a typed object system with inheritance.

Second, creating an environment for cognition is
hard. Each radio, much less each radio team,
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contains a vast amount of data about its perfor-
mance and a range of configuration options. Mak-
ing sense of that information, and in a way that
multiple cognitive entities can manage is hard. Our
approach was to make objects typed, and to create
helper applications such as the Broker and the
Coordination Manager and the Reconfiguration
Manager. Time will tell if this is the right approach.
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