
A NS-3-based Cloud Wireless Network’s Emulator
for Undergraduate Teaching

Alejandro Huamantuma, Cesar Santivanez
Advanced Networks Research Lab (GIRA-PUCP)

Pontificia Universidad Católica del Perú
Lima, Perú

{alejandro.huamantuma, csantivanez}@pucp.edu.pe

Abstract—The COVID-19 pandemic limited the availability of
in-classroom laboratory experiences with physical wireless equip-
ment. Existing simulation tools, while adequate for performance
analysis as required for research, fail to provide the real-world
feeling and user interface of a physical equipment. Due to this
lack of realism, they do not fulfill the educational objectives
of undergraduate courses. Indeed, under a competencies-based
curricula, it is expected that a student interacts with the equip-
ment, configures it, run her experiments, evaluates the results,
decides in any changes, and then implements and validates
them. This paper reports our development of a cloud-based
wireless network emulator that intends to give the students the
same user experience as the one obtained with our testbed of
(physical) Wireless Access Points running OpenWRT. We also
discuss students’ experiences using our emulator on a Wireless
Networking undergrad course in the second half of 2020.

Index Terms—Wireless Networks, testbeds, emulation, virtual-
ization, undergraduate teaching.

I. INTRODUCTION

Due to many factors that affect the performance of a
networking technology, experimentation (either real or based
on simulations) have become a valuable tool for the network
engineer. This is even more so in wireless networking, where
developing theoretical models that properly tracks the behavior
induced by the wireless channel’s variability has remained an
elusive task. Because of this, significant effort has been put
in the development of testbeds researchers and engineers can
analyze the performance of the new networking technologies
under different environmental conditions.

In general, testbeds can be classified into real, emulated
and simulated. Each one with different levels in costs, com-
plexity, realism, flexibility and repeatability among others.
Real testbeds are typically more expensive, complex and have
higher fidelity than the others but usually they lack flexibility
and repeatability (see Table I). Simulators, on the other hand,
often lack realism or fidelity. Emulators present better realism,
since they make it possible to test the same code/application
the end-system will use.

Physical testbeds are expensive due to the high costs for
hardware. To alleviate this, institutions have been pooling
resources in collaborative testbeds. The NSF’s sponsored
Global Environment for Network Innovations (GENI) testbed
[7] is arguably the better known testbed providing a virtual
laboratory extended all across the United States connecting

many local testbeds and sharing a lot of compute resources.
But in the case of wireless networks, the dynamic nature
of the transmission medium complicate the development of
wireless testbeds. Some projects associated to GENI also
contain wireless nodes in different topologies allowed to be
used. For example, Emulab [1] has nodes with 802.11 a/b/g
interfaces distributed at various locations in a large building
and provide a physical diagram so you can reserve the ones
which best fits your necessities. It is easy to infer that one main
drawback of this physical testbeds is the absence of control
in the channel characteristics and the typologies available
limiting its flexibility.

The Open-Access Research Testbed for Next-Generation
Wireless Networks (ORBIT) [3] is another example of a
physical wireless network testbed. It includes 400+ nodes (20
x 20 grid) ready to be used remotely for different researchers
through an automated software platform. But in this case,
the testbed uses four multi-band antennas located in the four
corners of the grid as a noise injection subsystem trying to
improve the flexibility of this platform. Even though this
testbed may improve the accuracy for specific scenarios, it
again lacks flexibility, is relatively complex to maintain and
needs high investments for hardware.

A different approach was needed to overcome physical
testbeds’ drawbacks. A promising one is the emulation of
the wireless nodes while simulating the wireless channel. This

TABLE I
COMPARISON OF TESTBEDS

Testbed Pros Cons
Emulab
[1]

Real wireless devices Limited flexibility and no con-
trol on transmission channel

WiTest
[2]

Real wireless devices Limited flexibility and no con-
trol on transmission channel

Orbit
[3]

Real wireless devices Limited flexibility and control
on transmission channel

Emane
[4]

Complete control of trans-
mission channel and real
application

Relatively few models limiting
the simulated scenarios

QOMB
[5]

Emulated wireless channel
over a wired channel

Each node correspond to a real
computer

Virtual-
mesh
[6]

Complete control of trans-
mission channel, topology
scalability using VMs

Large topologies require enough
hardware resources for virtual-
ization



configuration add flexibility to the system and avoid the costs
of implementing real hardware but do not compromise its
reliability.

An example of this approach is the QOMB testbed [5] which
is capable of recreating a multi-hop wireless network on a
wired cluster of around 1000 PCs where each node has a set
of libraries that configure a new kernel module.

As dedicated physical nodes are expensive and complex to
maintain, virtualization becomes the next natural choice. On
[6] the authors proposed a testbed based on OMNet++ Discrete
Event Simulator. Their Virtualmesh framework provides new
modules that allow the communication between the simulator
and Virtual Machines (VMs) representing nodes in the net-
work. Even though the flexibility gained by the usage of VMs,
this testbed seems to be not easily scalable for large amounts
of nodes due to the use of VMs which tent not to be efficient
considering the testbed target and the resources’ consumption.

The Extendable Mobile Ad-hoc Network Emulator
(EMANE) [4] is an open source framework written in C++
that provides a flexible modular environment for simulated
wireless networks and connecting them with external real
applications with a TUN/TAP interface. Unfortunately, This
project has few models that are not enough to simulate a wide
range of environments compared to other popular simulators
available.

Most of the testbed discussed so far have been developed for
research purposes, with an emphasis in performance evalua-
tion. Undergraduate education, however, have some additional
requirements, such as higher realism, repeatability, and user
experience. As such, most of the tools described so far are not
the most adequate for classroom instruction. Thus, the main
objective of our work was to develop an emulation tool that

• Provide the same user experience/interface as the one pro-
vided by physical devices running UNIX-based systems
(e.g., AP running OpenWRT [8]).

• Provide the ability to add open-source packages such as
OLSR, Quagga, etc.

• Allow to use typical networking diagnostic tools (e.g.
tcpdump, wireshark)

• Provide high-fidelity, repeatable results.
• Scale to the same size as physical testbeds used in

undergrad courses.
• Runs in a VM in our private cloud, so we can accommo-

date a large number of (remote) students simultaneously.
• Include a fidelity self-check where the system report

latency when inserting a physical packet into the sim-
ulator’s event queue, and validate that it doesn’t exceed
the packet time budget

The remainder of the paper is organized as follows: Sec-
tion II reviews the related work, Section III describes our
solution, Section IV we share our experiences implementing
our testbed inside the university’s private cloud and the benefits
of using it on Undergraduate Teaching, and Section V presents
our conclusions.

II. RELATED WORK

In [9], Dorathy et. al. compare different simulation tools for
wireless networks. They conclude that the open source NS-3
[10] simulator is to be preferred due to its long and growing
list of modules that can recreate many desired scenarios, their
periodic releases also fixes different bugs reported by their
community of researchers. Furthermore, NS-3’s emulation
capabilities allow real-time simulations to forward packets
outside the simulator through a TUN/TAP interface (see Fig-
ure 1), allowing real or emulated devices to interact with
the simulation. Thus, NS-3 emulation framework is a good
starting point for creating a high-realism testbed for undergrad
classroom use.

Several attempts have been made to close the gap between
simulations and real experiments using ns-3’ emulation. On
[11] the authors tried to reproduce a real experiment with
NS-3 by feeding the simulator with real traces (nodes posi-
tions, link quality, etc). After comparing the real, trace-based
simulation and plain simulation results, researchers concluded
that the trace-based approach is much more accurate as it
was able to reproduce the link instability encountered in
the real experiment. Similarly, the authors of [12] proposed
methodologies to pass from simulation to experimentation
(allowing to run emulated resources in real testbeds) and from
experimentation to simulation (repeating a real test with a
trace-based simulation). These works, however, have focused
on performance and not in providing a real user experience
(as required for classroom education).

The Scala Compute Platform for Network Simulations (SCP
for ns-3) [13] provides a user-friendly commercial solution
to run (MPI-based) distributed ns-3 simulations in a cloud
environment, with optimizations allowing it to scale to 100s
and 1000s of nodes. However, this solution targets wireline
networks where the topology can be easily split in clusters.
In a wireless scenario, however, the physical channel induces
dependencies that make such a division non trivial.

This paper differs from past works in that the emphasis
is put on education as opposed to research. This, it aims to
provide the end user (student) with the same interface as the
actual equipment using common unix-based utilities such as
iwconfig-ns3.

III. TESTBED DEVELOPMENT

We leveraged the NS-3’s Emulation Mode shown in Fig-
ure 1 to built a testbed that is flexible, repeatable, accurate
and realistic enough for use by undergraduate students, but
requiring low cost resources.

With Emulation Mode, it is possible to use containers in
lieu of physical devices, and use the NS-3 process to simulate
the wireless channel. The devices (containers) can then run
UNIX-based systems (OpenWRT [8], Ubuntu, etc.), popular
networking tools (Python, Wireshark, etc.), and protocol im-
plementations (OLSR, Quagga, etc.). However, manipulation
of the simulated wireless interface (for example, to change
its transmit power) was still only possible from ns-3 code
inside the simulation, which breaks the realism required for



Fig. 1. NS-3’s Emulation Mode with Linux Containers

undergraduate class use. Instead, a user in a real device would
use the well-known ”iwconfig” tool, or similar.

Thus, a new tool was developed (iwconfig-ns3) capable of
managing NS-3 radio parameters from the devices (containers)
imitating the behavior of iwconfig. To this end, extensions
were added to the WifiNetDevice module of ns-3 so that it can
process special control messages sent by our iwconfig-ns3 tool
running in the devices (Linux Containers). These messages
include commands to query (GET) information from the sim-
ulated wireless interface, and messages to change (SET) the
value of one parameter from the simulated wireless interface.
The end-user experience is the same as if the iwconfig tool
was used on a physical device. The following sections explain
deeper our testbed development with an special interest in our
”iwconfig-ns3” tool.

A. NS-3 Emulation Mode with Linux Containers

As part of it’s emulation mode, ns-3 has a module named
ns3::TapBridge that creates a bridge between a simulated
interface and a virtual TAP interface outside the simulator
environment. Even tough this feature is presented on ns-3’s
documentation [10] as a way to connect Virtual Machines
through a simulated communication channel, we saw an oppor-
tunity to our target of adding realism but still requiring low
resources by the usage of Linux Containers (LXC) instead.
We preferred LXC over other high-level tools such as Docker,
Kubernetes, etc., since it provided the visibility/flexibility
needed during our development.

A node in our testbed is made by the combination of the
emulated (LXC) and simulated (ns-3) node. LXC containers
let us use well know networking tools and test linux-based ap-
plications using few resources compared to a Virtual Machine.
Traffic generated on the LXC travels over a virtual ethernet,
a linux bridge and a TAP interface which its other side is
attached to a socket inside the simulator. NS-3 associates
each TAP interface with a ns3::TapBridge and, in our case,
each of them with an object ns3::WifiNetDevice wich is the
representation of the wireless interface (IEEE 802.11) inside
the simulator.

After real packets are sent into the simulated environment,
ns-3 take out its Ethernet headers, the rest is copied into an
attribute called buffer of an object from class ns3::Packet that
will be used inside the simulation. The simulated wireless
interface adds layer 2 and layer 1 headers before calling
the corresponding methods for transmission into the wireless
channel. Similarly after a packet is received by a simulated
node, if that node is the destination, the buffer is transformed
in an Ethernet packet and forwarded to the emulated node
through the TAP interface. Then the emulated node performs
the expected processes with that packet.

B. New API for simulated radio interface live management
As this testbed is going to be used for education purposes,

we needed to emulate the real experiences as close as possi-
ble. On physical laboratories, students can manipulate radio
parameters inside each wireless router and analyze changes in
the wireless communication performance thanks to the useful
”iwconfig” linux tool. In contrast, in ns-3 simulations the
wireless interface is a C++ object and its attributes can only
be predefined before each simulation run. The functionality of
manipulating radio parameters on-the-fly during a simulation
is not a feature of ns-3. Although it will not be difficult
for students to learn how to modify those attributes on the
simulator, we wanted to provide them with a user experience
as close to the real system as possible and mainly focus on
the educational objectives of the lab experience.

Fig. 2. Our iwconfig tool workflow

To this end, a ”iwconfig-ns3” tool was developed that
mimics the behavior of the well-known iwconfig tool (up to the
help menu), so that the end user was not aware that he wasn’t
using the real iwconfig tool. The tool consists of two parts:
The script ”iwconfig” inside the Linux Container (emulation)
and the new module ns3::TapBridgeApiWifiNetDevice added
to the source code of ns-3 (simulation). The workflow of our
tool is as follows (see Figure 2):

1) The python script iwconfig inside the container get the
parameters that the user wants to query or change (GET
or SET).

2) Then the script, with help from the packet-generating
library Scapy, creates (serialize) a layer two packet
with the special EtherType ”0x0810”, that contains a
predefined chain of words with the parameters inside
its payload, using the special character ”@” as field
separator.



3) This packet is forwarded through TAP interface to the
simulation environment.

4) Once it is inside ns-3, a new method in ns3::TapBridge
analyze the EtherType. If it coincides with the one
specific for ”iwconfig-ns3” then the packet is deseri-
alized by the new method (ns3::Buffer) to obtain the
parameters inside its payload.

5) Obtained parameters are forwarded to a new module
(ns3::TapBridgeApiWifiNetDevice) on ns-3 that process
them and determine the user request.

6) The algorithm then execute the change (if requested) or
query the information requested.

7) Immediately, an answer is serialized inside a new packet
and sent back to the container through TAP interface.

8) Finally, the script inside the container receives the
packet, deserialize it and shows the output to the user.

An example of the usage of ”iwconfig-ns3” is shown in
Figure 3, where the TxPower is set to 30dBm, and then the
values of all parameters are listed. This is the same behavior as
expected with the actual iwconfig tool. The parameters listed in
Figure 3 are all the iwconfig parameters that the tool currently
supports (i.e., can list or modify).

Fig. 3. ”iwconfig-ns3” tool example for SET and then GET

C. Implementation at university’s private cloud

Our school’s Telecommunications Engineering department
has a private cloud that provides support to the department
including researchers’ compute slices, virtual laboratories,
and research testbeds. The cloud is orchestrated by our own
Virtual Network Research Testbed (VNRT), which is based on
OpenStack. with some modifications to run natively at layer
2 and to reduce the networking overhead and latencies intro-
duced by the hypervisor. Its features include the virtualization
of switches, routers and servers in user-defined topologies
with a friendly graphic interface. In addition, VNRT has a
hierarchical system of roles allowing, for example, that lab
assistant can visualize the virtual console of their students,
which is very useful for education purposes.

Each testbed user was provided a Virtual Machine (VM)
inside our private cloud. In that VM a script was provided to
setup the required number of containers (emulated devices) as
well as to launch the ns-3 process. The VM was to be properly
dimensioned to the anticipated load (see calibration, below).

Fig. 4. Theoretic Model used to validate the calibration experiments’ results

In order to maximize the performance of the ns-3 based
system in a multicore and virtual environment, the priority and
affinity of the ns-3 process needed to be modified. Indeed, as it
was reported in [14], the NS-3 process, being single threaded
cannot take advantage of the existence of multiple cores, but
instead it suffers from performance degradation each time it
moved to a different physical core, invalidating the previous
cache/TLB buffer. Thus, the ns-3 process encounters a ”cold”
cache/TLB. In our system, the NS-3 process was pinned to the
last (virtual) core of VM changing its affinity via the taskset
command) and its dynamic priority was increased using the
nice command. This process is then repeated in the physical
server by setting the affinity and priority of the the actual
process associated the last virtual cpu of the VM. The intention
is to guarantee the ns-3 process (”the channel”) of each student
an get as close to 100% of CPU time as required.

The first version of the tool (used on the second semester
of 2020) fulfilled the initial expectations but needed careful
calibration to ensure the correctness of packet’s latencies
between each simulation. This required that the laboratory
instructors have a good understanding of the wireless medium
as well as ns-3 to debug it and check its functionality.

For the second version, completed in 2021, a fidelity self-
check tool was included where the system report latency when
inserting a physical packet into the simulator’s event queue,
and validate that it doesn’t exceed the packet time budget.
At the end of a simulation, the tool report the number of
such incidents, if any, allowing the instructor to verify its
correctness without having to understand the details of the
simulator or the dynamic of the wireless system.

D. Testbed Calibration

In order to validate the proper functioning of the tool and its
ability to handle the required load without introducing artificial
packet delays or losses, stress and calibration tests were
performed using a simple two-node topology with the channel
pathloss set to 40dB (fixed, no fading). The 802.11n wireless
interface of each node is set to MCS Index 7 (65Mbps) and
the rest of parameters are set so that no RTS/CTS are sent.
Using the Iperf tool, one node sends more traffic than the
channel’s capacity (saturation), and the received throughput
is compared against the expected (theoretical) value obtained
using the model shown in Figure 4.

Custom logs were added to our tool to record information
that allows for validation without slowing down the simulation,
which would result in the system’s failure to respond to
the packets arrival in real-time. The content of the logs are
minimal: MAC packets transmission and reception times, if



Fig. 5. Iperf test results

the packet is being transmitted or received, node ID, type
of packet, the MPDU, and the MAC address. Still, even
with these lightweight logs, the simulation has to be com-
piled with the optimization flag enabled for g++ compilation
(‘ -O -g -fstrict-overflow -march=native ‘) in order to prevent
the logs from slowing down the simulation.

The calibration begins with a simple test of sending 1 UDP
datagram of 5000 bytes (5000 Payload + 8 UDP Header).
The MTU was set to 1500 bytes, consistent with a TUN/TAP
interface that mimics a Ethernet interface, it is expected that
4 packets are forwarded through the container TAP interface
to the ns3 simulation. The tool’s custom logs were reviewed
to verify the size and number of fragments sent, to validate
that our theoretical model was properly accounting for all the
headers at different layers, and that throughput-optimizing fea-
tures of 802.11n, such as fragment aggregation, were disabled.
The timing of packets transmissions and receptions were also
validated to make sure all the physical layer parameters were
set as expected in the theoretical model shown in Figure 4.

Figure 5 shows the results of the stress test reported by
the receiver (iperf server). It can be seen that the achieved
throughput is in the range of [30.7, 30.9] Mbps, which closely
resembles the expected theoretical value of 30.7Mbps. This
proofs both that the system is well calibrated and that it is
able to cope with the traffic load without introducing additional
delays or packet losses.

IV. EXPERIENCE AT UNDERGRAD EDUCATION

The development of this testbed began in the middle of the
COVID-19 pandemic with the goal of using it in the upcoming
semester. A first version was completed before the beginning
of our Wireless Networking course on the second semester of
2020.

This course introduces the undergrad student to the analysis
of the throughput of the wireless channel as an stochastic
process. The first half of the course deals with point-to-point
communication under a variable channel (fading) ignoring
contention. The second half of the course studies the effect of
contention under the CSMA-family of protocols, with empha-
sis 802.11n (WiFi). In the accompanying laboratories before
pandemic, the students used a physical testbed made of TP-
LINK TL-WR3600 Access Points (APs) to run experiments
where they are required to choose the best configuration for

Fig. 6. Topology used in Lab. 4: A 12-node MANET with Hidden Terminals

a given scenario. The firmware of the APs has been reflashed
with an image of the OpenWRT [8] operating system.

For the 2020-2 semester, 17 students enrolled in the course,
and each was assigned a Virtual Machine (VM) with 4 cores
and 4GB of RAM in our private cloud running the VNRT or-
chestrator. Each VM included scripts to deploy the containers
and our modified ns-3 simulator required for each experience.
Each container emulated one AP running OpenWRT with the
”iwconfig-ns3” tool to interact with simulated radio.

The laboratory guides were slightly modified to account
for the fact that the access to the ”equipment” is through
our private cloud and that now each so-called equipment is
actually a container inside the student’s VM. Besides that, the
students used the same commands and tools that were used in
the pre-pandemic experiences. A total of 4 remote laboratory
experiences were possible thanks to this testbed:

1) Bit-rate selection considering multi-path fading using
UDP protocol. Ad-Hoc mode.

2) Bit-rate selection considering multi-path fading using
TCP protocol. Ad-Hoc mode.

3) Analysis of CSMA/CA protocol with and without
RTS/CTS considering multi-path fading and hidden ter-
minals. Infrastructure mode.

4) Analysis of CSMA/CA protocol with and without
RTS/CTS considering multi-path fading and hidden ter-
minals. Ad hoc mode.

Laboratory 4 was the most challenging due to the usage of
12 nodes forming a multi-hop (mesh) network (Figure 6) and
the routing protocol OLSR for its end-to-end communication.
The main objective of this laboratory was to analyze the
achievable MAC throughput under the ”loss-of-state” induced
by RTS/DATA packets collisions on a mesh networks [15].

Students were asked to measure end-to-end throughput
under different load levels for UDP traffic, comparing the case
where RTS/CTS packets were used against the case where
they were not. Traffic flowed from left to right and vice-
versa, causing collisions in the link between nodes 6 and 7.
The experiment were performed with 1470-bytes datagram
as well as with 300-bytes datagrams. The students were
able to identify that RTS/CTS mechanism can not stabilize
the throughput for multi-hop ad-hoc networks. In addition,
they could see the difference on the impact of the usage of
RTS/CTS for for different packet sizes.



Before pandemic, students used to mention that only the
physical testbed arrangement and the configuration of APs
required too much time. In consequence, the percentage of
students that did not finish the actual graded activities was high
(around 50%). In addition, their different tests used to show
different results which makes even more difficult to compare
and analyze with other students in group as math calculus were
not consisted with what they were experimenting.

On semester 2020-2 we ask students to tell us their experi-
ences during these new format of laboratories.

• Most of them agree that thanks to the simulated channel,
they were able to identify clearly the effects that were
the goal of each laboratory.

• Their calculus were consistent with their results and
encourage them to continue studying.

• Another comment was related to the cloud environment.
Students mentioned that having a personal VM let them
practice on-demand and be more prepared for the next
evaluation.

At the end of the semester our first impressions, as teachers,
were related to the accuracy of the laboratory experiences. The
target is that students analyze specific phenomenons which are
part of the course topics but that is difficult when many other
factors are involved (like in real testbeds). Experiences inside
the simulated-emulated testbed are completely controllable.
Results are consistent with the expectations and students can
analyze without distractions. In sum, the usage of our testbed
leads to a better understanding of the course topics.

Based on the good results obtained when using the testbed
so far, we have decided to continue its use in the course once
the school reopens after the pandemia, combining in-person
shorter-duration lab sessions with physical equipment with
longer-duration homework assignments.

V. CONCLUSIONS

This paper presented the development of an NS3-based
wireless network’s emulation testbed enhanced with an API
adding realism and its usage on undergraduate courses at this
University.

A brief discussion of the state of the art highlighting
the limitations of existing testbeds for undergrad education
was presented. That information was used to determine the
objectives of our own design: flexibility and repeatability
without compromising reliability, as well as rational use of
resources in a cloud environment.

Laboratory experiences exemplifies the advantages of our
developed wireless testbed. On one hand, we were able to
use real implementations like OLSR for linux and test its
performance with linux-based tools like Iperf. On the other
hand, the tool ”iwconfig-ns3” did help to keep the complex
simulated-emulated environment behind the scenes and let
students focus on the main important topics of each lab.

Discussion of our classroom experiencies is presented show-
ing that the goal of providing an adequate user experience for
our students – at a time when real laboratory experiments were
not possible – was achieved.

VI. FUTURE WORK

While extra care was taken to calibrate our experiences to
guarantee fidelity of the results, we are currently working on
a next version of the tool to overcome the one-core barrier by
developing a multi-threaded channel simulator.

REFERENCES

[1] EMULAB. Accesed on 08-23-2021. URL: https://www.
emulab.net/.

[2] WiTest. Accesed on 08-23-2021. URL: https://witestlab.
poly.edu/site/.

[3] D. Raychaudhuri et al. “Overview of the ORBIT radio
grid testbed for evaluation of next-generation wireless
network protocols”. In: IEEE Wireless Communications
and Networking Conf. Vol. 3. 2005, pp. 1664–1669.

[4] Extendable Mobile Ad-hoc Network Emulator
(EMANE). Accesed on 04-27-2020. URL: https :
/ / www . nrl . navy . mil / Our - Work / Areas - of -
Research/Information-Technology/NCS/EMANE/.

[5] R. Beuran et al. “QOMB: A Wireless Network Emula-
tion Testbed”. In: IEEE GLOBECOM (Mar. 2009).

[6] Maxa et al. “Emulation-Based Performance Evaluation
of Routing Protocols for Uaanets”. In: LNCS (2015),
pp. 227–240.

[7] Rick McGeer et al. The GENI Book. 2016.
[8] A. Holt et al. “OpenWRT”. In: Embedded Operat-

ing Systems: A Practical Approach. London: Springer,
2014, pp. 161–181.

[9] I. Dorathy et al. “Simulation tools for mobile ad hoc
networks: a survey”. In: Journal of Applied Research
and Technology 16.5 (June 2019).

[10] ns-3 Network Simulator. Accesed on 08-23-2021. URL:
https://www.nsnam.org/.

[11] H. Fontes et al.l. “A Trace-based ns-3 Simulation Ap-
proach for Perpetuating Real-World Experiments”. In:
Proceedings of the Workshop on ns-3 (June 2017).

[12] H. Fontes et al. “ns-3 NEXT: Towards a Reference Plat-
form for Offline and Augmented Wireless Networking
Experimentation”. In: Proceedings of the Workshop on
ns-3 (June 2019).

[13] Scala Compute Platform for Network Simulations (SCP
for ns-3). Accesed on 11-1-2020. URL: https : / /
scalacomputing.com/network-simulation.

[14] David P. Wiggings et al. Scaling NS-3 DCE Experiments
on Multi-Core Servers. MIT Lincoln Labs Tech. Report,
Accession Number AD1033806. Lexington, MA, USA,
June 2016.

[15] Cesar A. Santivanez. “Exploiting Multi-User Detec-
tion (MUD) Radio Capabilities to Improve Stability of
CSMA/CA for MANETs”. In: IEEE LATINCOM. 2018,
pp. 1–6.


