
Progressive Scaling: Methodology for Tunning andValidating Large Ad Hoc Networks SimulationsCesar Santivanez A. Bruce McDonaldBBN Technologies Northeastern University10 Moulton St., Cambridge, MA 02138 360 Huntington Ave., Boston, MA 02115csantiva@bbn.com mcdonald@ece.neu.eduKeywords: Wireless, ad hoc, routing, scalabilityAbstractValidating large scale ad hoc network simulation is usu-ally infeasible due to the high cost associated with imple-menting a network with so many nodes. Indeed, typicalad hoc network implementations (testbeds) consist of atmost tens of nodes. To complicate matters further, thehigh cost of high performance simulation platforms andthe limited time available for simulation study rendersthe use of high-�delity simulations impractical. Thus,large scale networks are studied by means of low �delitysimulations, where the physical and MAC layer behavioris `abstracted' with non-obvious impact on the qualityof the results. In this paper, we present a technique,namely `Progressive Scaling', that allows evaluating andimproving the quality of large scale simulations at a rea-sonable cost. The use of Progressive Scaling providesthe research community with an increased con�dence onthe validity of conclusions derived through large scalesimulations. This technique is illustrated by an exam-ple of the authors experience applying it to the study ofrouting scalability for large ad hoc networks.1 INTRODUCTIONAn ad hoc network is a wireless network where the nodes(possibly mobile) communicate (possibly using multiplehops) without the presence of an infrastructure. Ad hocnetworks are suitable in situations where the networkmust be rapidly deployed and function without an in-frastructure, such as military communications, disasterrelief, campus networks, etc.Recent years have witnessed a surge in the interestin ad hoc networks. Spurred by ever-decreasing form-factors and cost of wireless transceivers and processors,a multitude of new applications are emerging. Theseinclude short-range ad hoc wireless networks for ubiq-

uitous computing, larger range indoor wireless LANsthat operate in ad hoc mode, metropolitan area net-works (e.g. Metricom [1], Rooftop [2]), and sensor net-works [3]. Standards such as Bluetooth, HomeRF, andIEEE 802.11 are giving impetus to the growth in thenumber of ad hoc communication enabled devices. In-deed, large ad hoc networks are on their way.Before large ad hoc networks are deployed, however,we need to design e�cient protocols to be run over them.Unfortunately, as it was the case for other large scalenetworks, the use of large-scale real-life testbed is pro-hibitively expensive. We are, then, forced to use simula-tion to study and compare di�erent candidate protocols.Simulation studies of ad hoc networks, however, needto circunvent two main problems. First, that the perfor-mance of a mobile network, specially an ad hoc network,is highly dependent on the obscure nature of radio prop-agation. Radio propagation in turn depends on manydynamic and unpredictable operating conditions, whichmakes it extremely hard to be accurately modeled ina simulation. Thus, the evaluation of an ad hoc net-working system is incomplete without validation usinga real life prototype. Second, even if high �delity mod-els of the physical (as well as MAC) layer were avail-able, employing them will require too much processingpower resulting in a high cost in time and money. Thus,researchers are usually forced to relay on simulationsemploying lower �delity, abstracted models for study-ing large ad hoc networks. However, abstracted modelof the physical layers may easily bias the researchers re-sults. For example, in [4] the authors showed exampleswhere the non-uniform impact that using di�erent phys-ical layer models has on the resulting performance ofthe simulated routing protocols caused a di�erence onthe ranking of the routing protocols depending on thephysical layer abstraction being used. Thus, the ques-tion that we ask ourselves is: how { short of building alarge scale prototype system { can we be sure that the `ab-stracted' models used on our simulations did not biasedour results.?

The BBN team developing network-layer protocolsin the the Density- and Asymmetry-adaptive Wire-less Network (DAWN) project[5] had to confront thisproblem. The DAWN project is part of the DARPAGlobal Mobile Information Systems (Glomo) program,and builds upon a system developed as part of the (alsoDARPA) Multimedia Support for Mobile Wireless Net-works (MMWN)[6]. The MMWN/DAWN system (re-ferred to as simply the DAWN system) provides network-layer support for QoS in large (hundred of nodes), dense,mobile ad hoc networks. The DAWN project team facedthe challange of validating its scalable techniques beyondthe capabilities of DAWN's 10 node testbed[7]. In par-ticular, the main author { as part of the DAWN projectteam { was responsible for evaluating a family of scalablevariants to Link State Routing, namely Fuzzy SightedLink State (FSLS) Routing, determining the best algo-rithm in this family.This paper describes the DAWN project team solutionto this problem: a technique we call Progressive Scaling.Progressive scaling consists on running our experimentson several di�erent platforms. The �rst platform is atestbed of actual radios. As many as economically fea-sible. Each sucesive platform reduce the �delity of theexperiment and therefore it also reduces our con�denceon the results. This con�dence is regained by validatingthe results obtained in the lower �delity platform againthe results obtained with the higher �delity platform.This process is further explained in Section 2.The remainder of the paper illustrates the use ofProgressive Scaling by describing its application in thestudy of the algorithms in the FSLS family. Section 3briey describes the FSLS family and Section 4 discussesour experience applying Progressive Scaling to deter-mine/validate the best algorithm on this family (FSLS).Finally, Section 5 presents the conclusions of this work.2 PROGRESSIVE SCALINGWe now consider a question that is fundamental to thestudy of network scalability. Given that a real-life pro-totype has a large hardware cost (nearly $5000 per nodein our case), it is prohibitively expensive, at least at theresearch stage, to construct a large testbed. How thendoes one evaluate whether the mechanisms are scalableor not? While this is a question that is valid for anykind of network, it is doubly important in ad hoc wire-less networks since the channel and radio properties arevery di�cult to capture in a model.In our work, we have used an approach that may bedescribed as progressive scaling. We have three evalua-tion methods { a real-life testbed of 10 nodes; an emu-

lated network where we run the very same software thatruns on the testbed, but replace the radios by a detailedsoftware emulation of the same; and an simulation modelin the OPNET simulation tool.Our approach is illustrated in Figure 1. A set of ex-periments is done on a 10 node real-life testbed, and re-peated for the emulated 10 node network. We comparethe results of these experiments and tune the emulationso that the model reects real-life as closely as possi-ble. We then scale up the emulation to about 50 nodes.Larger numbers of nodes is impractical since this is avery high �delity emulation. We then conduct a set ofexperiments on a 50 node OPNET simulation model andcompare it with the results from the emulated network,and again, tune the OPNET simulation to synchronizethe results. We then conduct 800 node experiments withthe OPNET model. This \synch-n-scale" method can beextended further using progressively lower �delity mod-els if necessary.We have only been able to follow this approach par-tially due to lack of resources and the proprietary natureof some of the protocols (e.g., the Nokia MAC proto-col). We have also found that modeling the radio andthe channel identically in two disparate simulation toolsis extremely di�cult (it is important to do so, as theperformance is very sensitive to this). Nonetheless, suchprogressive scaling has given us much more con�dencein our large-scale simulation results than if had only runa 800 node simulation.In the reminder of this section, we describe each ofthe platforms we used.2.1 Radio TestbedThe DAWN testbed is based upon the LR 4000 em-bedded router from Nokia Wireless Routers (formerlyRooftop Communications) [2]. This is a wireless IProuter product that uses the Utilicom Longranger 2050radio modem, and a Motorola processor with Flash ROMand RAM, all integrated into a single \box". The Utili-com radio is a 2.4 GHz ISM band, spread spectrum radiowith programmable data rates upto 1.676 Mbps.We selected this product over other candidates (e.g.the popular WaveLAN PCMCIA with a notebook) forthree main reasons. First, our software could be down-loaded to run in embedded mode which obviates the needfor a notebook computer and gives better performance.Second, the Utilicom radio was the only commercial ra-dio that provides transmit power control { a key require-ment for the DAWN topology control mechanism. Third,it came with a suite of IP-related protocols that made iteasy for us to attach to other networks using IP (DAWNis a \subnet" or \link" level system from IP's viewpoint

scale
10 node
testbed

10 node
emulation

Experiment

synch 50 node
emulation

50 node
OPNET
model

Experiment

synch 800 node
OPNET
model

scaleFigure 1: The \synch-n-scale" approach to validating scalability of protocols without compromising �delity. Results from areal-life testbed, an emulation thereof, and a simulation are used to progressively validate system performance.
Protocols

Nokia IP Stack

Nokia MAC

Utilicom 2050 Radio

DAWN
PROTOCOLS

DAWN IP GATEWAY

Topology
Control

Elastic
Virtual
Circuits

Scalable
Link State
Routing

QoS based Forwarding

DAWN

Figure 2: The components of a testbed node, including themodules comprising the DAWN protocolsand runs \below" IP). Fourth, it provided a developmentenvironment, the C++ Protocol Toolkit (CPT) that al-lowed the same software to be downloaded into the radioto be used for high �delity simulation/emulation, reduc-ing the time from algorithm design/simulation to actualimplementation.The protocol modules comprising the DAWN embed-ded system are illustrated in Figure 2, along with thelayers above and below them. In this paper we will dis-cuss our experiments with the Scalable Link State Rout-ing module. More information about our testbed andthe experiments run over it can be found in [7].2.2 CPT EmulationAs mentioned before, the DAWN code running embed-ded in the LR4000 was developed using the C++ Proto-col Toolkit (CPT) provided by Nokia Wireless Routers.CPT provides a number of commonly used functionssuch as timer and packet header manipulations. Ad-ditionally, the CPT toolkit already included a libraryof protocols to choose from, so we need not spend timedeveloping one.The CPT toolkit also included a high �delity softwaremodel of the radio (utilicom 2050) and the wireless chan-nel (assuming 1=r4 propagation characteristics). Thus,with CPT the same code used in real life can be used onsimulation by simple replacing the radio and the channelby their software models, signi�cantly reducing the time

required for assembly and debugging.One immediate advantage of using the CPT toolkit,was our ability to expand the limits of our experimentsfar beyond the 10-node limit of our testbed. On theother hand, the proprietary nature of the radio andchannel models provided prevented us from modify-ing/improving these models to better match our experi-ences or the models used on the OPNET platform.We run our CPT emulations on a FreeBSD system.The hard-coded limit on the number of nodes was of100 nodes. However, before reaching this number therunning times due to the high �delity modeling becametoo long. The actual maximum network size we used inour experiments was of 80 nodes.2.3 OPNETAbove the tens of nodes, the use of CPT high �delity em-ulations was not practical. For evaluating our protocolson larger size networks we rely on simulations obtainedusing OPNET version 6 running on Solaris workstations.The OPNET simulations used on our Scalable LinkState Routing studies employed high �delity models ofthe routing and MAC algorithms. No `abstraction' wasallowed in these modules. No `backdoor' communicationwas allowed: nodes only used locally available informa-tion obtained through packet exchange eith neighboringnodes. Mechanisms were not assumed to `work properly'but were actually implemented.The radio and channel modules used simpli�ed ab-stract models based on the default OPNET's wirelessradio pipeline stages. These stages, however, had to bemodi�ed to increase �delity as follows:� The receiver power decay with distance r was set tor4 instead of r2.� A packet with extremely low signal is no longercause for the carrier busy signal to be triggered.This feature made sense in a wireless LAN whereanyone can hear to anyone, but in a multihop net-

work some nodes transmissions are just too weak tobe perceived.� Since several low power packets may combine into asigni�cant interference, we needed to keep track ofthese packets and the cumulative interference theycause. This was not done in OPNET by defaultsince its model assume that the channel would lockto the �rst signal that arrived (regardless of itspower) and treated all remaining signals as noise.Note that not keeping track of interference signalcaused OPNET to declare the channel free aftercompleting reception of a weak signal even if astronger signal was in the middle of reception.� The carrier sensing (signal lock) signal is declaredACTIVE only if the combined received energy(background noise, interference from other packets,and received power of the currently processed packet- if any) exceeds a con�gurable threshold. This bet-ter models what happens in the radio (synchroniza-tion stage). So, not only a weak signal won't causethe carrier sensing to trigger, but the carrier busysignal won't disappear upon completion of a packetreception if the combined interference is still abovethe threshold.The above changes inceases OPNET processing bur-den, since packets that were treated as `NOISE' (lessprocessing required) are now tracked as `VALID' in or-der to properly calculate the interference power. To al-leviate in part this increase in processing requirements,we modi�ed the closure stage so that it only processespackets whose receive power is above a threshold. So,packets whose energy is so low that not even combinedmay trigger the carrier busy signal in an actual radioare no processed at the receiver, reducing the processingburden.Thus, the OPNET radio model employed was a high�delity one, if compared with typical OPNET simula-tions. However, it di�er from the real-life radio in twomain aspects. First, our modeling of the packet synchro-nization and capture process was simple: a thresholdcomparator with a binary output instead of { at least{ an stochastic process with a probability distributiondependent on the signal-to-noise ratio at a given time.Second, the pathloss was assumed dependent only ondistance. A decay exponent of 4 was used to capture thee�ect of multipath and other physical layer phenome-nae. Large pathloss changes due to small displacements{ presents even on broadband system { were ignored.The e�ect of these variations, though, were somehow re-covered by the random nature of OPNET BER compu-tation, which made possible that two consecutive packets

be received with a di�erent number of bits in errors.Overall, our OPNET models provided high qualitysimulations at a reasonable simualtion time. However,when we increased the network size to 800 nodes, thesimulation time become too long. If bigger networksare to be studied, a decrease in the simulation �delitywould be necessary (of course, using the progressive scal-ing technique to validate teh models).3 FSLS ALGORITHMSStandard Link State (SLS) routing, where each nodesends a Link State Update (LSU) immediately after alink status change (e.g. a link goes up or down), doesnot scale well with network size. The control overheadper node it induces increases linearly with network size,eventually consuming the node entire available band-width. A reduction in the control overhead, however,may be obtained both in space (limiting who the linkstate update is transmited to) and time (limiting thetime between successive link status information dissem-ination). This observation motivates the study of thefamily of Fuzzy Sighted Link State (FSLS) algorithms.In a highly mobile environment, an FSLS approachwill transmit link status updates at particular time in-stant that are multiple of te seconds. Thus, several linkchanges are `collected' and transmitted every te seconds.The Time To Live (TTL) �eld of the link status update(LSU) packet is set to a value si which determines thatthe LSU packets is transmitted to a distance of si hopsfrom the node where the LSU is originated (see Figure 3,where a vertical arrow represents that a LSU is sent atthat time, and the number above the arrow representsthe number of hops that the LSU will travel). The aboveapproach guarantees that a node that is si hops awayfrom a tagged node will learn about the tagged node'slink status change at most after 2i�1te seconds.Di�erent approaches may be implemented with di�er-ent choices of the si function. For example, if si = 1,the Discretized Link State (DLS) approach is obtained.DLS is similar to SLS and only di�ers in that DLS donot send a LSU immediately after a link status change isdetected by it waits for the te interval to be completedto collect several link status changes in one LSU. DLS isan improvement of SLS that tries to scale with mobility.Similarly, if si = k for i < p and si = 1 the NearSighted Link State approach (NSLS) is obtained. NSLSuses the `memory' of past links to forward packets inthe direction of the former destination location. As thepacket gets to a node that is on the `sight' (i.e. less thank hops away) of the destination, this node will know howto forward the packet to the destination. NSLS behavior

te2te te5 te7te3 te6te4 te8 te10te9 te11 te15te12 te16te13 te140 ...

T
T

L
=

S 5

TTL = ∝

time

S1 S1 S1

S2
S1S1

S2

S4

S1

S2

S3

S1

S2

S3

S1Figure 3: General LSU generation process for the familyof Hazy Sighted Link State Algorithmsis similar to a 2 level cluster approach and is best suitedfor scenarios where the tra�c is localized , that is, themost likely destinations are the nodes inside the `sight'area.FSLS is based in the observation that nodes that arefar away do not need to have complete topological in-formation in order to make a good next hop decision,thus propagating every link status change over the net-work may not be necessary. FSLS reduction on controloverhead, however, comes with the cost of reducing thequality/availability of the source-destination routes. Theimpact of such sub-optimal routing is dependent on thelevel and diversity of tra�c that the network must carry.Under certain assumptions (most notably the uniformityof the tra�c) the best algorithm on the FSLS was foundto be the Hazy Sighted Link State (HSLS) algorithm, inwhich the si = 2i. The interested reader is referred to[8] for details of the analysis.In this paper we describe our experience using Pro-gressive Scaling in the validation of our theoretical re-sults stating that HSLS outperfroms SLS, DLS, andNSLS.4 APPLYNG PROGRESSIVESCALINGThis section illustrates the process followed to validateour large scale simulations of algorithms in the FSLSfamily.The �rst step was to sanity-check our software. Tothis end we set up a multi-hop topology using our radiotestbed. Setting this multihop topology in a reduced-size setting turned out to be more di�cult than we ex-pected. We need to �nd the right separation and loca-tion of nodes so that they can not listen to each otherdirectly. We learnt that obstructions has greater e�ectthan distance in pathloss. We observed packets being

dropped when, for example, a car passed by one of thenodes. We noticed link appings, and a higher thanexpected number of unidirectional links. We tune ourneighbor discovery module to reduce the e�ect of linkapping and designed our algorithms to be resilient tounidirectional links.Our system was put to the �nal test when we experi-ment with the 10-node network in a realistic setting: theMcKenna test site in Ft. Benning, Georgia. The sitehas a number of \mock" buildings, simulating a smalltown. Soldiers with backpacks containing DAWN nodesplayed out military scenarios with tra�c generators sim-ulating real-life voice and message exchanges. It was ex-tremely instructive to observe the vast di�erence in prop-agation characteristic between an open environment andone with buildings. As nodes moved inside or amongstbuilding the connectivity started to degrade rapidly. TheFt. Benning experiment took a large amount of timeand e�or to orchestrate and analyze, but it provided in-valuable insight into the characteristics of the physicalmedium our system should be run over: rapidly changingconnectivity with a fair amount of unidirectional links.Our radio testbed experiments con�rmed that our al-gorithms were mature enough to run on real life scenar-ios: there were not unexpected physical layer dynamicsthat would a�ect its performance to the point of renderit ine�ective. With this validation we proceed to run sev-eral emulation with di�erent network sizes. The smallernetwork experiments where compared against our radiotestbed experience. At his point, an exact match cannot be found due mainly to the di�culty of matchingchannel parameters such as instantaneous pathloss andthe proprietary nature of Nokia's CPT's channel model.However, we verify that in both cases (testbed and em-ulation) the network layer algorithms (routing in thiscase) experience similar stress (in terms of link appingsand presence of unidirectional links).For small networks, the emulation results for di�er-ent algorithms was similar. However, when we increasethe network size we could observe that algorithms inthe FSLS family outperformed the Standard Link State(SLS) approach. In �gure 4 (left) we can see the result ofan experiment comparing the 4 algorithms under studyin 60-node networks of di�erent densities. The resultsare typical at this network size: all FSLS algorithms(DLS, NSLS, HSLS) outperform SLS, but there is noclear winner among them. To decide which is the mostscalable algorithm in this class we need to increase thenetwork size beyond the 100-node allowed by our CPTemulator.Larger network size experiments were conducted inOPNET. Figure 4 (right) shows the results obtained for

Algorithm ThroughputNSLS 0.3516HSLS 0.446Table 1: Throughput for a 800-node networknetwork sizes from 100 to 400. Note that SLS is no longersimulated since it is already clear that it is outperformedby te FSLS algorithms and SLS simulations take muchmore time. We notice that NSLS and HSLS { whichbehave similarly when the netowrk radius is small { out-perform DLS. But, could this di�erence be a productof a unfair biased of OPNET models againt DLS??. Toanswer this question we used our CPT emulation plat-form. Since in CPT emulation the performance of DLSand HSLS (NSLS) was too close and OPNET results at100-node networks were not conclusive either, we decideto reduce the transmission rate of our CPT emulationsso that the network is stressed similarly as OPNET's 400node network case. To this end, we used the Utilicom2020 emulation (similarly to Utilicom2050 but with alower transmission rate of 298 kbps). The densities werealso adjusted to match the longer transmission range atthis lower speed, matching OPNET average node degree.The results of this experiments are shown in Figure 4(center), where the throughput of a 80-node network fordi�erent node speeds is shown. Since NSLS behaves sim-ilarly as HSLS at this size, only HSLS is ploted. SLS isalso plotted for completeness (and because at this size itdoes not take so much to run). This results validate OP-NET results, that HSLS (and NSLS) outperforms DLS.It should be noted that CPT's and OPNET's match-ing was not straightforward, since di�erent channelmodels (Nokia's proprietary model apparently presentedlower �delity than OPNET's) and even di�erences inthe quality of the random number generated in bothplatforms (i.g. correlation among consecutive randomnumbers) inuenced the results. However, even beforea careful analysis was underwent to minimize the im-pact of this diferences in the network layer protocols,the relative advantage of HSLS (and NSLS) over DLSwas evident.With this reassurance of our OPNET model, we usedit to compare NSLS and HSLS at higher network sizes.At 400-nodes we already observed a trend of HSLS start-ing to outperform NSLS. When we increase the networksize to 800 nodes we obtained the results shown in Ta-ble 1, where HSLS scalability superiority is evident.Thus, the con�dence in our OPNET simulationsgained through the use of the progressive scaling tech-

nique allowed us to determine the best algorithm in theFSLS family and at the same time identify those simu-lation artifacts that may bias our results, allowing us tomitigate their e�ect. Furthermore, the identi�cation ofthese artifacts clear us of the uncertainty about resultsnot a�eced by them, and therefore we can make a moreextensive and e�cient use of the data collected in oursimulations.5 CONCLUSIONSProgressive scaling is a powerful technique that helps tovalidate/improve the con�dence on our simulations.Although perfect matching among platforms is not al-ways possible, identifying and mitigating the simulationartifacts (such as imperfect channel models, optimisticassumption about slow varying channels and link qual-ities, dependence on random numbers used on di�erentnodes, etc.) that bias performance improve the qualityof our results.Finally, the con�dence an insight gained through theprocess of progressive scaling allows to extract more use-ful data and gain more knowledge out of our simulationlogs.This technique was successfully applied by the authorsin a comparative study of scalable routing algorithm forad hoc networks.6 ACKNOWLEDGEMENTSThe authors wish to acknowledge Regina Rosales-Hainand Ram Ramanathan, members of BBN's DAWN teamfor conducting the experiments on the radio testbed andfor their contributions for the development of the Pro-gressive Scaling technique.References[1] http://www.metricom.com[2] http://www.rooftop.com[3] G. Pottie and W. Kaiser, \Wireless Sensor Net-works." Communications of the ACM, 2000.[4] M. Takai;J. Martin;R. Bagrodia. 2001.\E�ects ofWireless Physical Layer Modeling in Mobile Ad HocNetworks." In Proceedings of MobiHoc'01 (LongBeach, CA, Oct. 4-5). ACM, New York, NY, 87-94.[5] \Density and Asymmetry-adaptive WirelessNetwork (DAWN)." BBN Technologies. http://www.ir.bbn.com/projects/dawn/dawn-index.html

0

0.2

0.4

0.6

0.8

1

4 6 8 10 12 14

T
hr

ou
gh

pu
t

Density

"HSLS"
"DLS"
"SLS"

0.05

0.1

0.15

0.2

0.25

0.3

0.35

14.4 21.6 28.8 36.0 43.2 50.4 57.6

T
hr

ou
gh

pu
t

Speed (mph)

Throughput versus speed, density = 0.5 nodes/sq. mile.

HSLS
DLS
SLS

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

100 150 200 250 300 350 400

T
hr

ou
gh

pu
t

Number of Nodes

Throughput versus network size, density = 4 nodes/sq. mile, speed = 57.6 mph.

"HSLS"
"NSLS"

"DLS"

Figure 4: Throughput results for di�erent network sizes and platforms. (left) 60-node network results obtained usingCPT. (middle) 80-node network results obtained using a low-rate CPT emulation. (right) 100- through 400-nodenetwork obtained using OPNET.[6] S. Ramanathan; M. Steenstrup. \Hierarchically-organized, Multihop Mobile Networks for Multime-dia Support." ACM/Baltzer Mobile Networks andApplications, Vol. 3, No. 1, pp 101-119.[7] R. Ramanathan and R. Hain. 2000. \An ad hocwireless testbed for scalable, adaptive quality-of-service support." In Proc. IEEE Wireless Com-munication and Networking Conference (WCNC),September 2000.[8] C. Santivanez; S. Ramanathan; I. Stavrakakis. 2001.\Making Link State Routing Scale for Ad Hoc Net-works.", In Proceedings of MobiHOC'2001 (LongBeach, CA, Oct. 4-5). ACM, New York, NY, 22-32.

