Progressive Scaling: Methodology for Tunning and
Validating Large Ad Hoc Networks Simulations

Cesar Santivanez
BBN Technologies

A. Bruce McDonald
Northeastern University

10 Moulton St., Cambridge, MA 02138 360 Huntington Ave., Boston, MA 02115

csantiva@bbn.com

Keywords: Wireless, ad hoc, routing, scalability

Abstract

Validating large scale ad hoc network simulation is usu-
ally infeasible due to the high cost associated with imple-
menting a network with so many nodes. Indeed, typical
ad hoc network implementations (testbeds) consist of at
most tens of nodes. To complicate matters further, the
high cost of high performance simulation platforms and
the limited time available for simulation study renders
the use of high-fidelity simulations impractical. Thus,
large scale networks are studied by means of low fidelity
simulations, where the physical and MAC layer behavior
is ‘abstracted’ with non-obvious impact on the quality
of the results. In this paper, we present a technique,
namely ‘Progressive Scaling’, that allows evaluating and
improving the quality of large scale simulations at a rea-
sonable cost. The use of Progressive Scaling provides
the research community with an increased confidence on
the validity of conclusions derived through large scale
simulations. This technique is illustrated by an exam-
ple of the authors experience applying it to the study of
routing scalability for large ad hoc networks.

1 INTRODUCTION

An ad hoc network is a wireless network where the nodes
(possibly mobile) communicate (possibly using multiple
hops) without the presence of an infrastructure. Ad hoc
networks are suitable in situations where the network
must be rapidly deployed and function without an in-
frastructure, such as military communications, disaster
relief, campus networks, etc.

Recent years have witnessed a surge in the interest
in ad hoc networks. Spurred by ever-decreasing form-
factors and cost of wireless transceivers and processors,
a multitude of new applications are emerging. These
include short-range ad hoc wireless networks for ubig-

mcdonald@ece.neu.edu

uitous computing, larger range indoor wireless LANs
that operate in ad hoc mode, metropolitan area net-
works (e.g. Metricom [1], Rooftop [2]), and sensor net-
works [3]. Standards such as Bluetooth, HomeRF, and
IEEE 802.11 are giving impetus to the growth in the
number of ad hoc communication enabled devices. In-
deed, large ad hoc networks are on their way.

Before large ad hoc networks are deployed, however,
we need to design efficient protocols to be run over them.
Unfortunately, as it was the case for other large scale
networks, the use of large-scale real-life testbed is pro-
hibitively expensive. We are, then, forced to use simula-
tion to study and compare different candidate protocols.

Simulation studies of ad hoc networks, however, need
to circunvent two main problems. First, that the perfor-
mance of a mobile network, specially an ad hoc network,
is highly dependent on the obscure nature of radio prop-
agation. Radio propagation in turn depends on many
dynamic and unpredictable operating conditions, which
makes it extremely hard to be accurately modeled in
a simulation. Thus, the evaluation of an ad hoc net-
working system is incomplete without validation using
a real life prototype. Second, even if high fidelity mod-
els of the physical (as well as MAC) layer were avail-
able, employing them will require too much processing
power resulting in a high cost in time and money. Thus,
researchers are usually forced to relay on simulations
employing lower fidelity, abstracted models for study-
ing large ad hoc networks. However, abstracted model
of the physical layers may easily bias the researchers re-
sults. For example, in [4] the authors showed examples
where the non-uniform impact that using different phys-
ical layer models has on the resulting performance of
the simulated routing protocols caused a difference on
the ranking of the routing protocols depending on the
physical layer abstraction being used. Thus, the ques-
tion that we ask ourselves is: how — short of building a
large scale prototype system — can we be sure that the ‘ab-
stracted’ models used on our simulations did not biased
our results.?

The BBN team developing network-layer protocols
in the the Density- and Asymmetry-adaptive Wire-
less Network (DAWN) project[5] had to confront this
problem. The DAWN project is part of the DARPA
Global Mobile Information Systems (Glomo) program,
and builds upon a system developed as part of the (also
DARPA) Multimedia Support for Mobile Wireless Net-
works (MMWN)[6]. The MMWN/DAWN system (re-
ferred to as simply the DAWN system) provides network-
layer support for QoS in large (hundred of nodes), dense,
mobile ad hoc networks. The DAWN project team faced
the challange of validating its scalable techniques beyond
the capabilities of DAWN’s 10 node testbed[7]. In par-
ticular, the main author — as part of the DAWN project
team — was responsible for evaluating a family of scalable
variants to Link State Routing, namely Fuzzy Sighted
Link State (FSLS) Routing, determining the best algo-
rithm in this family.

This paper describes the DAWN project team solution
to this problem: a technique we call Progressive Scaling.
Progressive scaling consists on running our experiments
on several different platforms. The first platform is a
testbed of actual radios. As many as economically fea-
sible. Each sucesive platform reduce the fidelity of the
experiment and therefore it also reduces our confidence
on the results. This confidence is regained by validating
the results obtained in the lower fidelity platform again
the results obtained with the higher fidelity platform.
This process is further explained in Section 2.

The remainder of the paper illustrates the use of
Progressive Scaling by describing its application in the
study of the algorithms in the FSLS family. Section 3
briefly describes the FSLS family and Section 4 discusses
our experience applying Progressive Scaling to deter-
mine/validate the best algorithm on this family (FSLS).
Finally, Section 5 presents the conclusions of this work.

2 PROGRESSIVE SCALING

We now consider a question that is fundamental to the
study of network scalability. Given that a real-life pro-
totype has a large hardware cost (nearly $5000 per node
in our case), it is prohibitively expensive, at least at the
research stage, to construct a large testbed. How then
does one evaluate whether the mechanisms are scalable
or not? While this is a question that is valid for any
kind of network, it is doubly important in ad hoc wire-
less networks since the channel and radio properties are
very difficult to capture in a model.

In our work, we have used an approach that may be
described as progressive scaling. We have three evalua-
tion methods — a real-life testbed of 10 nodes; an emu-

lated network where we run the very same software that
runs on the testbed, but replace the radios by a detailed
software emulation of the same; and an simulation model
in the OPNET simulation tool.

Our approach is illustrated in Figure 1. A set of ex-
periments is done on a 10 node real-life testbed, and re-
peated for the emulated 10 node network. We compare
the results of these experiments and tune the emulation
so that the model reflects real-life as closely as possi-
ble. We then scale up the emulation to about 50 nodes.
Larger numbers of nodes is impractical since this is a
very high fidelity emulation. We then conduct a set of
experiments on a 50 node OPNET simulation model and
compare it with the results from the emulated network,
and again, tune the OPNET simulation to synchronize
the results. We then conduct 800 node experiments with
the OPNET model. This “synch-n-scale” method can be
extended further using progressively lower fidelity mod-
els if necessary.

We have only been able to follow this approach par-
tially due to lack of resources and the proprietary nature
of some of the protocols (e.g., the Nokia MAC proto-
col). We have also found that modeling the radio and
the channel identically in two disparate simulation tools
is extremely difficult (it is important to do so, as the
performance is very sensitive to this). Nonetheless, such
progressive scaling has given us much more confidence
in our large-scale simulation results than if had only run
a 800 node simulation.

In the reminder of this section, we describe each of
the platforms we used.

2.1 Radio Testbed

The DAWN testbed is based upon the LR 4000 em-
bedded router from Nokia Wireless Routers (formerly
Rooftop Communications) [2]. This is a wireless IP
router product that uses the Utilicom Longranger 2050
radio modem, and a Motorola processor with Flash ROM
and RAM, all integrated into a single “box”. The Utili-
com radio is a 2.4 GHz ISM band, spread spectrum radio
with programmable data rates upto 1.676 Mbps.

We selected this product over other candidates (e.g.
the popular WaveLAN PCMCIA with a notebook) for
three main reasons. First, our software could be down-
loaded to run in embedded mode which obviates the need
for a notebook computer and gives better performance.
Second, the Utilicom radio was the only commercial ra-
dio that provides transmit power control — a key require-
ment for the DAWN topology control mechanism. Third,
it came with a suite of IP-related protocols that made it
easy for us to attach to other networks using IP (DAWN
is a “subnet” or “link” level system from IP’s viewpoint

10 node
testbed

Figure 1: The “synch-n-scale” approach to validating scalability of protocols without compromising fidelity. Results from a
real-life testbed, an emulation thereof, and a simulation are used to progressively validate system performance.

-/

(7
Nokia|P Stack DAWN 1P GATEWAY
DAWN DAWN To Scalable | Elastic
pology :
PROTOCOLS Protocols Control | Link State | Virtual
Routing Circuits
NokiaMAC QoS based Forwarding
Utilicom 2050 Radio LT ~ 7
-

Figure 2: The components of a testbed node, including the
modules comprising the DAWN protocols

and runs “below” IP). Fourth, it provided a development
environment, the C++ Protocol Toolkit (CPT) that al-
lowed the same software to be downloaded into the radio
to be used for high fidelity simulation/emulation, reduc-
ing the time from algorithm design/simulation to actual
implementation.

The protocol modules comprising the DAWN embed-
ded system are illustrated in Figure 2, along with the
layers above and below them. In this paper we will dis-
cuss our experiments with the Scalable Link State Rout-
ing module. More information about our testbed and
the experiments run over it can be found in [7].

2.2 CPT Emulation

As mentioned before, the DAWN code running embed-
ded in the LR4000 was developed using the C++ Proto-
col Toolkit (CPT) provided by Nokia Wireless Routers.
CPT provides a number of commonly used functions
such as timer and packet header manipulations. Ad-
ditionally, the CPT toolkit already included a library
of protocols to choose from, so we need not spend time
developing one.

The CPT toolkit also included a high fidelity software
model of the radio (utilicom 2050) and the wireless chan-
nel (assuming 1/r* propagation characteristics). Thus,
with CPT the same code used in real life can be used on
simulation by simple replacing the radio and the channel
by their software models, significantly reducing the time

required for assembly and debugging.

One immediate advantage of using the CPT toolkit,
was our ability to expand the limits of our experiments
far beyond the 10-node limit of our testbed. On the
other hand, the proprietary nature of the radio and
channel models provided prevented us from modify-
ing /improving these models to better match our experi-
ences or the models used on the OPNET platform.

We run our CPT emulations on a FreeBSD system.
The hard-coded limit on the number of nodes was of
100 nodes. However, before reaching this number the
running times due to the high fidelity modeling became
too long. The actual maximum network size we used in
our experiments was of 80 nodes.

2.3 OPNET

Above the tens of nodes, the use of CPT high fidelity em-
ulations was not practical. For evaluating our protocols
on larger size networks we rely on simulations obtained
using OPNET version 6 running on Solaris workstations.

The OPNET simulations used on our Scalable Link
State Routing studies employed high fidelity models of
the routing and MAC algorithms. No ‘abstraction’ was
allowed in these modules. No ‘backdoor’ communication
was allowed: nodes only used locally available informa-
tion obtained through packet exchange eith neighboring
nodes. Mechanisms were not assumed to ‘work properly’
but were actually implemented.

The radio and channel modules used simplified ab-
stract models based on the default OPNET’s wireless
radio pipeline stages. These stages, however, had to be
modified to increase fidelity as follows:

e The receiver power decay with distance r was set to
r* instead of r2.

e A packet with extremely low signal is no longer
cause for the carrier busy signal to be triggered.
This feature made sense in a wireless LAN where
anyone can hear to anyone, but in a multihop net-

work some nodes transmissions are just too weak to
be perceived.

e Since several low power packets may combine into a
significant interference, we needed to keep track of
these packets and the cumulative interference they
cause. This was not done in OPNET by default
since its model assume that the channel would lock
to the first signal that arrived (regardless of its
power) and treated all remaining signals as noise.
Note that not keeping track of interference signal
caused OPNET to declare the channel free after
completing reception of a weak signal even if a
stronger signal was in the middle of reception.

e The carrier sensing (signal lock) signal is declared
ACTIVE ounly if the combined received energy
(background noise, interference from other packets,
and received power of the currently processed packet
- if any) exceeds a configurable threshold. This bet-
ter models what happens in the radio (synchroniza-
tion stage). So, not only a weak signal won’t cause
the carrier sensing to trigger, but the carrier busy
signal won’t disappear upon completion of a packet
reception if the combined interference is still above
the threshold.

The above changes inceases OPNET processing bur-
den, since packets that were treated as ‘NOISE’ (less
processing required) are now tracked as ‘VALID’ in or-
der to properly calculate the interference power. To al-
leviate in part this increase in processing requirements,
we modified the closure stage so that it only processes
packets whose receive power is above a threshold. So,
packets whose energy is so low that not even combined
may trigger the carrier busy signal in an actual radio
are no processed at the receiver, reducing the processing
burden.

Thus, the OPNET radio model employed was a high
fidelity onme, if compared with typical OPNET simula-
tions. However, it differ from the real-life radio in two
main aspects. First, our modeling of the packet synchro-
nization and capture process was simple: a threshold
comparator with a binary output instead of — at least
— an stochastic process with a probability distribution
dependent on the signal-to-noise ratio at a given time.
Second, the pathloss was assumed dependent only on
distance. A decay exponent of 4 was used to capture the
effect of multipath and other physical layer phenome-
nae. Large pathloss changes due to small displacements
— presents even on broadband system — were ignored.
The effect of these variations, though, were somehow re-
covered by the random nature of OPNET BER compu-
tation, which made possible that two consecutive packets

be received with a different number of bits in errors.

Overall, our OPNET models provided high quality
simulations at a reasonable simualtion time. However,
when we increased the network size to 800 nodes, the
simulation time become too long. If bigger networks
are to be studied, a decrease in the simulation fidelity
would be necessary (of course, using the progressive scal-
ing technique to validate teh models).

3 FSLS ALGORITHMS

Standard Link State (SLS) routing, where each node
sends a Link State Update (LSU) immediately after a
link status change (e.g. a link goes up or down), does
not scale well with network size. The control overhead
per node it induces increases linearly with network size,
eventually consuming the node entire available band-
width. A reduction in the control overhead, however,
may be obtained both in space (limiting who the link
state update is transmited to) and time (limiting the
time between successive link status information dissem-
ination). This observation motivates the study of the
family of Fuzzy Sighted Link State (FSLS) algorithms.
In a highly mobile environment, an FSLS approach
will transmit link status updates at particular time in-
stant that are multiple of t. seconds. Thus, several link
changes are ‘collected’ and transmitted every t. seconds.
The Time To Live (TTL) field of the link status update
(LSU) packet is set to a value s; which determines that
the LSU packets is transmitted to a distance of s; hops
from the node where the LSU is originated (see Figure 3,
where a vertical arrow represents that a LSU is sent at
that time, and the number above the arrow represents
the number of hops that the LSU will travel). The above
approach guarantees that a node that is s; hops away
from a tagged node will learn about the tagged node’s
link status change at most after 2'~1t. seconds.
Different approaches may be implemented with differ-
ent choices of the s; function. For example, if s; = oo,
the Discretized Link State (DLS) approach is obtained.
DLS is similar to SLS and only differs in that DLS do
not send a LSU immediately after a link status change is
detected by it waits for the t. interval to be completed
to collect several link status changes in one LSU. DLS is
an improvement of SLS that tries to scale with mobility.
Similarly, if s; = k for ¢ < p and s; = oo the Near
Sighted Link State approach (NSLS) is obtained. NSLS
uses the ‘memory’ of past links to forward packets in
the direction of the former destination location. As the
packet gets to a node that is on the ‘sight’ (i.e. less than
k hops away) of the destination, this node will know how
to forward the packet to the destination. NSLS behavior

S

TTL=

S4

S3

AITATATA ATA ATA

0 te 2te 3te 4te Ste 6t 7le 8te Ste 10te 1lte 12te 13te 14te 15te 16te *** fime

Figure 3: General LSU generation process for the family
of Hazy Sighted Link State Algorithms

is similar to a 2 level cluster approach and is best suited
for scenarios where the traffic is localized , that is, the
most likely destinations are the nodes inside the ‘sight’
area.

FSLS is based in the observation that nodes that are
far away do not need to have complete topological in-
formation in order to make a good next hop decision,
thus propagating every link status change over the net-
work may not be necessary. FSLS reduction on control
overhead, however, comes with the cost of reducing the
quality/availability of the source-destination routes. The
impact of such sub-optimal routing is dependent on the
level and diversity of traffic that the network must carry.
Under certain assumptions (most notably the uniformity
of the traffic) the best algorithm on the FSLS was found
to be the Hazy Sighted Link State (HSLS) algorithm, in
which the s; = 2°. The interested reader is referred to
[8] for details of the analysis.

In this paper we describe our experience using Pro-
gressive Scaling in the validation of our theoretical re-
sults stating that HSLS outperfroms SLS, DLS, and
NSLS.

4 APPLYNG PROGRESSIVE
SCALING

This section illustrates the process followed to validate
our large scale simulations of algorithms in the FSLS
family.

The first step was to sanity-check our software. To
this end we set up a multi-hop topology using our radio
testbed. Setting this multihop topology in a reduced-
size setting turned out to be more difficult than we ex-
pected. We need to find the right separation and loca-
tion of nodes so that they can not listen to each other
directly. We learnt that obstructions has greater effect
than distance in pathloss. We observed packets being

dropped when, for example, a car passed by one of the
nodes. We noticed link flappings, and a higher than
expected number of unidirectional links. We tune our
neighbor discovery module to reduce the effect of link
flapping and designed our algorithms to be resilient to
unidirectional links.

Our system was put to the final test when we experi-
ment with the 10-node network in a realistic setting: the
McKenna test site in Ft. Benning, Georgia. The site
has a number of “mock” buildings, simulating a small
town. Soldiers with backpacks containing DAWN nodes
played out military scenarios with traffic generators sim-
ulating real-life voice and message exchanges. It was ex-
tremely instructive to observe the vast difference in prop-
agation characteristic between an open environment and
one with buildings. As nodes moved inside or amongst
building the connectivity started to degrade rapidly. The
Ft. Benning experiment took a large amount of time
and effor to orchestrate and analyze, but it provided in-
valuable insight into the characteristics of the physical
medium our system should be run over: rapidly changing
connectivity with a fair amount of unidirectional links.

Our radio testbed experiments confirmed that our al-
gorithms were mature enough to run on real life scenar-
ios: there were not unexpected physical layer dynamics
that would affect its performance to the point of render
it ineffective. With this validation we proceed to run sev-
eral emulation with different network sizes. The smaller
network experiments where compared against our radio
testbed experience. At his point, an exact match can
not be found due mainly to the difficulty of matching
channel parameters such as instantaneous pathloss and
the proprietary nature of Nokia’s CPT’s channel model.
However, we verify that in both cases (testbed and em-
ulation) the network layer algorithms (routing in this
case) experience similar stress (in terms of link flappings
and presence of unidirectional links).

For small networks, the emulation results for differ-
ent algorithms was similar. However, when we increase
the network size we could observe that algorithms in
the FSLS family outperformed the Standard Link State
(SLS) approach. In figure 4 (left) we can see the result of
an experiment comparing the 4 algorithms under study
in 60-node networks of different densities. The results
are typical at this network size: all FSLS algorithms
(DLS, NSLS, HSLS) outperform SLS, but there is no
clear winner among them. To decide which is the most
scalable algorithm in this class we need to increase the
network size beyond the 100-node allowed by our CPT
emulator.

Larger network size experiments were conducted in
OPNET. Figure 4 (right) shows the results obtained for

|| Algorithm | Throughput ||

NSLS 0.3516
HSLS 0.446

Table 1: Throughput for a 800-node network

network sizes from 100 to 400. Note that SLS is no longer
simulated since it is already clear that it is outperformed
by te FSLS algorithms and SLS simulations take much
more time. We notice that NSLS and HSLS - which
behave similarly when the netowrk radius is small — out-
perform DLS. But, could this difference be a product
of a unfair biased of OPNET models againt DLS??. To
answer this question we used our CPT emulation plat-
form. Since in CPT emulation the performance of DLS
and HSLS (NSLS) was too close and OPNET results at
100-node networks were not conclusive either, we decide
to reduce the transmission rate of our CPT emulations
so that the network is stressed similarly as OPNET’s 400
node network case. To this end, we used the Utilicom
2020 emulation (similarly to Utilicom2050 but with a
lower transmission rate of 298 kbps). The densities were
also adjusted to match the longer transmission range at
this lower speed, matching OPNET average node degree.
The results of this experiments are shown in Figure 4
(center), where the throughput of a 80-node network for
different node speeds is shown. Since NSLS behaves sim-
ilarly as HSLS at this size, only HSLS is ploted. SLS is
also plotted for completeness (and because at this size it
does not take so much to run). This results validate OP-
NET results, that HSLS (and NSLS) outperforms DLS.

It should be noted that CPT’s and OPNET’s match-
ing was not straightforward, since different channel
models (Nokia’s proprietary model apparently presented
lower fidelity than OPNET’s) and even differences in
the quality of the random number generated in both
platforms (i.g. correlation among consecutive random
numbers) influenced the results. However, even before
a careful analysis was underwent to minimize the im-
pact of this diferences in the network layer protocols,
the relative advantage of HSLS (and NSLS) over DLS
was evident.

With this reassurance of our OPNET model, we used
it to compare NSLS and HSLS at higher network sizes.
At 400-nodes we already observed a trend of HSLS start-
ing to outperform NSLS. When we increase the network
size to 800 nodes we obtained the results shown in Ta-
ble 1, where HSLS scalability superiority is evident.

Thus, the confidence in our OPNET simulations
gained through the use of the progressive scaling tech-

nique allowed us to determine the best algorithm in the
FSLS family and at the same time identify those simu-
lation artifacts that may bias our results, allowing us to
mitigate their effect. Furthermore, the identification of
these artifacts clear us of the uncertainty about results
not affeced by them, and therefore we can make a more
extensive and efficient use of the data collected in our
simulations.

5 CONCLUSIONS

Progressive scaling is a powerful technique that helps to
validate/improve the confidence on our simulations.

Although perfect matching among platforms is not al-
ways possible, identifying and mitigating the simulation
artifacts (such as imperfect channel models, optimistic
assumption about slow varying channels and link qual-
ities, dependence on random numbers used on different
nodes, etc.) that bias performance improve the quality
of our results.

Finally, the confidence an insight gained through the
process of progressive scaling allows to extract more use-
ful data and gain more knowledge out of our simulation
logs.

This technique was successfully applied by the authors
in a comparative study of scalable routing algorithm for
ad hoc networks.

6 ACKNOWLEDGEMENTS

The authors wish to acknowledge Regina Rosales-Hain
and Ram Ramanathan, members of BBN’s DAWN team
for conducting the experiments on the radio testbed and
for their contributions for the development of the Pro-
gressive Scaling technique.

References

[1] http://www.metricom.com
[2] http://www.rooftop.com

[3] G. Pottie and W. Kaiser, “Wireless Sensor Net-
works.” Communications of the ACM, 2000.

[4] M. Takai;J. Martin;R. Bagrodia. 2001.“Effects of
Wireless Physical Layer Modeling in Mobile Ad Hoc
Networks.” In Proceedings of MobiHoc’01 (Long
Beach, CA, Oct. 4-5). ACM, New York, NY, 87-94.

[5] “Density and Asymmetry-adaptive Wireless
Network (DAWN).” BBN Technologies. http://
www.ir.bbn.com/projects/dawn/dawn-index.html

Throughput versus speed, density = 0.5 nodes/sq. mile Throughput versus network size, density = 4 nodes/sg. mile, speed = 57.6 mph.
07

HSLS ——
DLS —-x—v

SLS %

06

02 0.5

Throughput
Throughput
Throughput

04| R R —

04

02|
0.1

0.05 L L L L L 03 L L L L L
0 L L L L 14.4 216 288 36.0 432 50.4 57.6 100 150 200 250 300 350 400

4 6 8 10 12 14 Speed (mph) Number of Nodes
Density

Figure 4: Throughput results for different network sizes and platforms. (left) 60-node network results obtained using
CPT. (middle) 80-node network results obtained using a low-rate CPT emulation. (right) 100- through 400-node
network obtained using OPNET.

[6] S. Ramanathan; M. Steenstrup. “Hierarchically-
organized, Multihop Mobile Networks for Multime-
dia Support.” ACM/Baltzer Mobile Networks and
Applications, Vol. 3, No. 1, pp 101-119.

[7] R. Ramanathan and R. Hain. 2000. “An ad hoc
wireless testbed for scalable, adaptive quality-of-
service support.” In Proc. IEEE Wireless Com-
munication and Networking Conference (WCNC),
September 2000.

[8] C.Santivanez; S. Ramanathan; I. Stavrakakis. 2001.
“Making Link State Routing Scale for Ad Hoc Net-
works.”, In Proceedings of MobiHOC’2001 (Long
Beach, CA, Oct. 4-5). ACM, New York, NY, 22-32.

