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1 Introduction

Recent years have witnessed a surge in the interest in ad hoc networks.
Spurred by ever-decreasing form-factors and cost of wireless transceivers
and processors, a multitude of new applications are emerging. These in-
clude short-range ad hoc wireless networks for ubiquitous computing, larger
range indoor wireless LANs that operate in ad hoc mode, metropolitan area
networks and sensor networks. Standards such as Bluetooth, HomeRF, and
IEEE 802.11 are giving impetus to the growth in the number of ad hoc com-
munication enabled devices. Propelled by these trends, ad hoc networks
with a large number (e.g. 1000s) of nodes are moving rapidly from the
realm of imagination to that of reality.

Deploying such large-scale networks requires scalable ad hoc routing pro-
tocols. There are a number of questions that arise when considering routing
scalability, including: what does scalability really mean, what factors does
scalability depend on, how scalable are current-day ad hoc networks routing
protocols, etc. Answering these questions is of paramount importance in



understanding and evaluating the set of mechanisms available for improving
ad hoc routing scalability, including, for example: hierarchical routing, ef-
ficient flooding, limited search/local repair (for reactive protocols), limited
dissemination, etc.

This chapter addresses the scalability of routing in ad hoc networks from
a fundamental viewpoint, and covers the state of the art in the metrics,
methodology, and techniques for designing highly scalable protocols. Both
the principles underlying routing scalability, and the protocols that put them
into practice are presented in a balanced manner. The intention is to provide
the reader with an insight into the scalability of and tradeoffs inherent in a
particular protocol, and introduce him or her to the design of highly scalable
protocols.

Ad hoc routing protocols can be broadly classified into proactive (or
table-driven) and reactive (or on-demand). While our treatment is mostly
in terms of proactive protocols, we emphasize that the basic principles are
quite generic and may well be applied to reactive protocols. In other words,
we present scalability principles in a given context but the principles in
general are not tied to that context.

This chapter is organized as follows. Section 2 presents a brief overview
of current ad hoc routing protocols and provides a more detailed description
of a selected set of representative protocols that will be used for compari-
son purposes. Section 3 presents a theoretical foundation for the study of
scalability, defining a routing scalability metric and a framework that has
proven to be useful in developing tractable models and obtaining closed form
expressions for ad hoc routing protocols. Section 4 presents the results ob-
tained when applying the methodologies described in Section 3 to the set of
representative protocols described in Section 2.

These results shed a new light into our understanding of scalability. They
provide the reader with a better understanding of the interactions and com-
bined effect of increasing the network size, mobility, and/or traffic load. An
important result is that limited-dissemination flat routing techniques, as well
as hierarchical routing techniques, present the best scalability properties re-
garding network size. Thus, an important question arises: Which approach
is preferable : hierarchical or flat routing? And, Under what circumstances
is each of these approaches better? Section 5 answers these questions. Sec-
tion 5 starts by discussing the design approaches for making ad hoc routing
protocols highly scalable. These approaches can be broadly classified into
“flat” and “hierarchical”. Using an exemplary protocol in each class, we
discuss the merits/demerits of each approach and then compare their the-



oretical and experimental performance. Finally, Section 6 presents some
conclusions and future research directions.

2 Overview of Ad Hoc Routing Protocols

The surge of interest in ad hoc networks has given rise to a plethora of ad
hoc routing protocols. To individually study each of them would consti-
tute a gigantic task. Fortunately, from a scalability point of view, we can
group protocols together into classes, and therefore focus on representative
protocols in each class.

Routing protocols can typically be classified as proactive and reactive.
Proactive protocols attempt to constantly build routes to destinations, so
that they are readily available when needed. Standard Link State (SLS) [1],
Distance Vector (DV) algorithms based on the Distributed Bellman-Ford
(DBF) algorithm[2], Optimized Link State Routing Protocol (OLSR)[3], and
Topology Broadcast Based on Reverse Path Forwarding (TBRPF)[4] are ex-
amples of proactive routing protocols. Reactive protocol build routes upon
request (from the upper layers) so they do not waste bandwidth transmit-
ting routing information when this information is not needed. Ad Hoc On-
Demand Distance Vector (AODV)[5, 6], Dynamic Source Routing (DSR)[7],
Associativity-Based Routing (ABR)[8], Temporally Ordered Routing Al-
gorithms (TORA)[9], and Distance Routing Effect Algorithm for Mobility
(DREAM)[10] are examples of reactive protocols.

Due to its simplicity, quick convergence, well understood dynamics, and
good performance, SLS is a good representative of the class of pure flat
proactive protocols. SLS will be used in the remainder of this chapter as a
representative of the class of pure proactive protocols. However, it should
be kept in mind that most of the conclusions hold for all the protocols in the
same class. Similarly, DSR is chosen as the representative of pure reactive
protocols, mainly due to its simplicity and the fact that this is the reactive
protocol that has received most attention in the literature. Indeed, DSR
is typically the benchmark most reactive routing protocol designers use to
compare its designs against.

As size increases, flat routing techniques such as SLS and DSR are no
longer efficient. A typical solution (for both proactive and reactive) proto-
cols has been to build a hierarchical structure to limit the control overhead
at the expense of route degradation. Hierarchical Link State (HierLS)[11],
Hierarchical State Routing (HSR)[12], Link Cluster Architecture (LCA)[13],



Clusterhead-Gateway Switch Routing (CGSR)[14], Multimedia support for
Mobile Wireless Networks (MMWN)[15], and Adaptive Routing using Clus-
ters (ARC)[16] are examples of hierarchical routing protocols.

The Hierarchical Link State algorithm presented in [11] is a good repre-
sentative of hierarchical routing techniques. It captures the essence of the
hierarchical approaches followed in [15, 12], still it is broad enough to allow
analyzing a wide range of design choices for hierarchical routing, mainly
regarding location management.

Besides the traditional definition of proactive versus reactive or flat
versus hierarchical, there are hybrid protocols. Zone Routing Protocol
(ZRP)[17, 18] is an example of such an hybrid approach. ZRP presents a
proactive and a reactive component. It successfully adapts its components
to different values of mobility over traffic activity radius[19], thus exhibiting
a behavior that ranges from pure proactive to pure reactive. Furthermore,
even though no hierarchy is being built or maintained, no node aggrega-
tion takes place and therefore all the nodes belong to the same level, ZRP
behaves as a 2-level reactive hierarchical scheme. ZRP will be used as a
representative of the class of hybrid approaches.

More recently, a new class of “limited information” protocols has been
proposed. These protocols are flat in the sense that they do not aggregate
routing information, and therefore they have the same memory requirements
as SLS. But in the other hand, they limit the rate and scope of information
dissemination so that the bandwidth consumed by routing updates propaga-
tion is reduced. Global State Routing (GSR)[20], and Source-Tree Adaptive
Routing (STAR)[21] are examples of protocols in this class that limit the
rate of information generation. Fisheye State Routing (FSR[12], and Hazy
Sighted Link State (HSLS)[22] are examples of routing protocols that limit
not only the generation rate but also the propagation scope of the rout-
ing information dissemination. HSLS presents the best performance among
protocols in this class and therefore will be use as its representative.

Finally, from a conceptual point of view it is interesting to consider a
mechanism that does not use a structured routing algorithm: Plain Flooding
(PF). The consideration and comparison of plain flooding will help illustrate
the point (network scenario) at which routing protocols break and, it be-
comes more efficient to just flood each data packet without attempting to
locate/keep track of the destination (mobility).

In the remainder of this section a brief description of each of the routing
protocols representative of its class is presented. The reader familiar with
these protocols (PF, SLS, DSR, HierLS, ZRP, and HSLS) may skip this



reading and proceed directly to Section 3.

2.1 Plain Flooding (PF)

In Plain Flooding, a source node S willing to send a packet to a destination
D broadcasts this packet to all its neighbors, regardless of the destination
identity. Node S’s neighbors, in turn rebroadcast the packet once (and just
once) to their neighbors, and so on. Every node in the network (unless the
network is partitioned) will receive at least one copy of the packet (typi-
cally more) and will re-broadcast the packet only once. In particular, the
destination node D will receive the packet and deliver it to it upper layers.

In PF, nodes then must keep track of the packets previously sent to avoid
sending a packet more than once.

The flooding mechanism described above is typically used to propagate
routing control messages inside a network. Flooding is not typically used
for normal data packet delivery. However, if the network size is small, the
traffic load is small and the mobility rate is very high, PF may be the best
routing alternative. Thus, PF can be used as a benchmark against other
routing protocols under extremely high mobility.

2.2 Standard Link State (SLS)

SLS and its variants are good representatives of proactive protocols. SLS
was initially used in the ARPANET][1] as the replacement of the original
Distance-Vector based routing protocol. Since then, several link state proto-
cols have been developed and are being used over different networks, includ-
ing OSPF, IS-IS, and NLSP, among others. SLS’s success was a consequence
of its being simple yet robust, and having predictable dynamics and quick
convergence in the presence of topology changes.

In SLS, a node sends (floods) a Link State Update (LSU) containing a
list of its current neighbors (and their associated link costs) to the entire
network each time it detects a link status change. A node also sends periodic,
soft-state LSUs every T}, seconds. Each node stores a copy of the latest LSU
received from each node in the network in a local database referred to as
topology table. The topology table provides each node with information about
the entire network connectivity.

To find a route to a destination node D, the source node (as well as each
intermediate node along the route) may apply Dijkstra’s Shortest Path First
(SPF) algorithm|[23] over its local copy of the topology table.



2.3 Dynamic Source Routing without Route Cache (DSR-
noRC)

DSR|[7] is a good representative of reactive protocols. DSR has received
considerable attention in the literature, especially due to the easy availability
of source code for different platforms. Today, DSR is the typical benchmark
used to compare against other ad hoc on-demand routing protocols.

In DSR, no proactive information is exchanged. A source node S builds
a route to a destination node D by flooding the network with a route request
(RREQ) message. When a RREQ message reaches node D (or a node with
a cached route towards the destination, if the route-cache option is enabled)
a route reply message is sent back to the source node S, including the newly
found route. Node S attaches the new route to the header of all subsequent
packets destined to node D, and any intermediate node along the route uses
this attached information to determine the next hop in the route.

2.4 Hierarchical Link State (HierLS)

As the size of a network increases, maintaining full topology information may
become prohibitively expensive. The bandwidth consumed in propagating
up-to-date topology information to each node in the network may grow too
large. Also, the memory required to store all this information may exceed the
node capabilities. Finally, the processing power required to compute routes
(for example executing the Dijkstra’s algorithm in a link state protocol) in
a timely fashion may also exceed the node’s processing capabilities.

A hierarchical approach is a technique for aggregating information. Nodes
are grouped in sets, several sets are grouped in supersets, and so on, forming
a hierarchy. This reduces the size and frequency of information dissemina-
tion, and reduces table sizes and processing requirements. All of this is at
the cost of reducing the quality (optimality) of the routes.

In this subsection we will discuss the implementation of this aggrega-
tion paradigm in a link state context. We will focus on a generic class of
hierarchical algorithms named Hierarchical Link State (HierLS) routing[11].
However, the reader should keep in mind that the hierarchical paradigm
may be applied to other routing techniques, not only proactive (e.g. Dis-
tance Vector-based) but also reactive. Also, different HierLS algorithms may
represent (abstract) higher level elements in the virtual topology differently.
This discussion focuses on the virtual node abstraction.

In the m-level HierLS routing[11, 15], network nodes are regarded as level



1 nodes, and level 0 clusters. Level ¢ nodes are grouped into level ¢ clusters,
which become level ¢ + 1 nodes, until the number of highest level nodes is
below a threshold and therefore they can be grouped (conceptually) into a
single level m. Thus, the value of m is determined dynamically based on
the network size, topology, and threshold values.

Link state information inside a level i cluster is aggregated (limiting
the rate of LSU generation) and transmitted only to other level i nodes
belonging in the same level i cluster (limiting the scope of the LSU). Thus,
a node link change may not be sent outside the level 1 cluster (if they do
not cause a significant change to higher levels aggregated information), thus
reducing the proactive overhead.

HierLLS for mobile networks relies on the Location Management service
to inform a source node S of the address of the highest level cluster that
contains the desired destination D and does not contain the source node S.!
For example, consider a 4-level network as shown in Figure 1. S and D are
level 1 nodes; X.1.1, X.1.2, etc. are level 2 nodes (level 1 clusters); X.1, X.2,
etc. are level 3 nodes (level 2 clusters); X, Y, V, and Z are level 4 nodes
(level 3 clusters); the entire network forms the level 4 cluster. The Location
Management (LM) service provides S with the address of the highest level
cluster that contains D and does not contain S (e.g. the level 3 cluster Z in
Figure 1). Node S can then construct a route toward the destination. This
route will be formed by a set of links in node S level 1 cluster (X.1.1), a set
of level 2 links in node S level 2 clusters (X.1), and so on. In Figure 1 the
route found by node S'is: S—n;—no—X.1.5—X.1.3—X2-X3-Y-Z-D.
When a node outside node S level 1 cluster receives the packet, the node
will likely produce the same high-level route towards D, and will ‘expand’
the high-level links that traverse its cluster using lower level (more detailed)
information. In Figure 1 this expansion is shown for the segment Z — D.
The Location Management (LM) service can be implemented in different
ways, whether proactive (location update messages), reactive (paging), or a
combination of both.

!Traditional, wireline-based hierarchical routing protocols do not need a location man-
agement service, since the address of the node is associated with its location. For example,
in the IP protocol the first part of a node address contains the identity of the subnet the
node belongs to.



Figure 1: A Source (S) - Destination (D) path in HierLS.

2.5 Zone Routing Protocol (ZRP)

ZRP is a hybrid approach, combining a proactive and a reactive part, trying
to minimize the sum of their respective overheads. In ZRP, a node dissemi-
nates event-driven LSUs to its k-hop neighbors (nodes at a distance, in hops,
of k or less). The set of k-hop neighbors constitute the node’s zone. Each
node has full topology information of nodes inside its zone and may forward
packets to any node within it. When a node needs to forward a packet out-
side its zone, it sends a route request to a subset of the nodes in the network,
namely the ‘border nodes’. The ‘border nodes’ will have enough information
about their own zones (i.e. k-hop neighborhoods) to decide whether to reply
to the route request or to forward it to its own set of ‘border’ nodes. The
route formed will be described in terms of the ‘border’ nodes only.

The maintenance of the zone structure allows for a reduction in the cost
of the route discovery procedure, since instead of flooding the entire network
with route request (as done in DSR) ZRP pokes a selected subset of (‘bor-
der’) nodes only. Also, the fact that routes are specified in terms of border
nodes only allows ‘border’ nodes in a path to locally recover from individ-
ual link failures, reducing the overhead induced by the route maintenance
procedure.



ZRP may dynamically adjust its zone size by increasing or decreasing
the value of k£ to balance the proactive (i.e. propagation information inside
the zone) and reactive (i.e. route discovery and maintenance) overheads.
ZRP may morph from a fully proactive (k tends to infinity) protocol when
a high traffic load is the main challenge to network survivability, all the
way to fully reactive (k equal to 1) protocol if the network scenario changes
to having node mobility as the main factor limiting network performance.
For typical, non-degenerated values of £ (i.e. k& > 1, but smaller than the
network diameter) ZRP will resemble a two-level hierarchical network.

2.6 Hazy Sighted Link State (HSLS)

HSLS is based on the observation that nodes that are far away do not need
to have complete topological information in order to make a good next hop
decision. Thus, propagating every link status change over the entire network
may not be necessary. In a highly mobile environment, a node running HSLS
will transmit - provided that there is a need to - a LSU only at particular
time instants that are multiples of t. seconds. Thus, potentially several link
changes are ‘collected’ and transmitted every t. seconds. The Time To Live
(TTL) field of the LSU packet is set to a value (which specifies how far
the LSU will be propagated) that is a function of the current time index
as explained below. After one global LSU transmission — LSU that travels
over the entire network, i.e. TTL field set to infinity, as for example during
initialization — a node ‘wakes up’ every t. seconds and sends a LSU with
TTL set to 2 if there has been a link status change in the last t. seconds.
Also, the node wakes up every 2t. seconds and transmits a LSU with TTL
set to 4 if there has been a link status change in the last 2t. seconds. In
general, a node wakes up every 2°"'t, (i = 1,2,3,...) seconds and transmits
a LSU with TTL set to 2° if there has been a link status change in the last
2i=1t, seconds. If a packet TTL field value (2') is greater than the distance
from this node to any other node in the network (which will cause the LSU
to reach the entire network), the TTL field of the LSU is reset to infinity
(global LSU), and the algorithm is re-initiated.

Nodes that are at most two hops away from a node, say X, will receive
information about node X'’s link status change at most after t. seconds.
Nodes that are more than 2 but at most 4 hops away from X will receive
information about any of X links change at most after 2t, seconds. In
general, nodes that are more than 2= but at most 2° hops away from X
will receive information about any of X links change at most after 27'¢,

10



=0 =0

16

8 8
42T242 242‘[242
S S O VO O O WO R W

2te 3te 4te 5te 6te 7te 8te 9te 10te 1lte 12te 13te 14te 15t 16te ***

2
A -
0t time

Figure 2: HSLS’s LSU generation process (when mobility is high).

seconds. Figure 2 shows an example of HSLS’s LSU generation process when
mobility is high and in consequence LSUs are always generated. An arrow
with a number over it indicates that at that time instant a LSU (with TTL
field set to the indicated value) was generated and transmitted. Figure 2
assumes that the node executing HSLS computes its distance to the node
farthest away to be between 17 and 32 hops, and therefore it replaces the
TTL value of 32 with the value infinity, resetting the algorithm at time 16t,.
The reader is referred to [22] and [24] for more details about HSLS.

HSLS is a flat routing protocol since each node is represented by an
entry in the (distributed) topology table at each node and routes are built
by applying Dijkstra’s algorithm over the entire set of nodes in the network
(high processing and memory requirements). However, HSLS differs from
traditional flat protocols in that each node’s vision of the topology table
is different. Besides, the propagation of the topology information is not
done by flooding the entire network each time but by sending information
to smaller areas of the network more frequently and gradually increasing
the areas’ size while decreasing the frequency of propagation, resembling
the information dissemination method employed in a multilevel hierarchical
approach.

3 Routing Scalability : Theoretical Background

There is a wide consensus on the importance of understanding the scalability
limits of both ad hoc networks and their related routing protocols. Surpris-
ingly, however, there is not a consensus of a well defined routing scalability
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metric. Adding to the chaos, there is sometimes a confusion between the
routing protocol scalability and the network scalability of the network the
protocol is run over.

In this section, we review a promising metric, the total overhead, that
captures the main impact of increasing network limiting parameters on per-
formance of routing protocol running on bandwidth-limited networks. The
limiting parameters of a network are those parameters — as for example mo-
bility rate, traffic rate, and network size, etc. — whose increase causes the
network (and oftentimes the routing protocol) performance to degrade. On
the remainder of this chapter only limiting parameters will be considered,
and therefore the terms ‘parameter’ and ‘limiting parameter’ will be used
indistinctly.

The Total Overhead metric enables the derivation of tractable models
and closed form expressions, providing us with the understanding of the
scalability properties of different ad hoc routing protocols.

3.1 Scalability Aspects of Ad Hoc Routing Protocols

When a network limiting parameter such as the network size increases, it
impacts the network at several, concurrent levels. For example, if the net-
work is running the Standard Link State (SLS) protocol, where each node
advertises its set of neighbors to all other nodes in the network, the increase
in the network size will cause:

e An increase in the rate of the Link State Updates (LSU) sent through
the network, and therefore an increase in the bandwidth consumed by
the control messages of the routing protocol.

e An increase in the memory requirements of each node, since each node
must store a local copy of the Topology Table, which contains an entry
per node in the network.

e Anincrease in the processing requirements of each node, since the time
complexity of the route computation algorithm (e.g. Dijkstra’s) used
for finding the best route to a given destination increases monotoni-
cally with the number of entries in its topology table (i.e. the number
of nodes in the network). Thus, more operations will need to be done
per unit of time, which may require the use of faster processors.

e Since more processing is being done, and more packets are being trans-
mitted, the power consumption also increases. Thus, the battery re-
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quirements of a mobile node also increases.

e Since the network diameter (i.e. maximum distance - in hops - be-
tween two nodes in the network) also increases, the average delay for
delivering a packet to its destination — assuming uniform traffic dis-
tribution, i.e. non-local traffic profile — also increases. 2 Also, since
the control packets (LSUs) and the data packets share the same trans-
mission medium, the aforementioned increase on the number of LSUs
will cause the data packets contending for access to the same channel
experiencing a longer delay before succeeding. As size increases the
delay may grow so large that real time applications like voice and video
can no longer be supported on the network.

Thus, an increase in network size has an impact on several aspects of
scalability. Which one of these aspects (bandwidth, memory, processing
power, energy consumption, delay, etc.) is the most important depends on
the characteristics of the network under study. In particular it depends on
which resource is the most scarce, or depleted first. Ad hoc networks tend
to be bandwidth-limited, i.e. bandwidth is the most scarce resource, but
emerging applications such as sensor networks may well shift the relative
importance of the scalability aspects to the point that processing power or
battery life become the more important ones.

It is extremely hard to define a metric that simultaneously encompasses
the effect of an increase in network parameters on all of the aforementioned
scalability aspects. Therefore, in order to build tractable models we must be
content with metrics that address each of these scalability aspects indepen-
dently. Thus, when referring to the bandwidth aspect we can talk about the
communication overhead or communication complexity of a protocol. Sim-
ilarly, when referring to the processing or memory requirements aspect we
can talk about the time or memory complexity of the protocol, respectively,
and so forth.

As mentioned before, a large class of ad hoc networks are bandwidth-
limited, that is, bandwidth is the most scarce resource. In other words, as
network parameters increase, it is the lack of additional bandwidth which
causes the network to collapse. While a bandwidth-related metric may not
fully characterize all the performance aspects relevant to specific scenario

2Although in this case (using SLS) the increase in the delay is independent of the
routing protocol being used, it is not rare to observe routing protocols (e.g. on-demand
ones) where the packet delay increase is caused by latency in the route discovery procedure.
This latency is dependent on the network size.

13



(for example it may fail to capture variation on packet delays) it does cap-
ture the main performance degradation due to a network parameter increase.
Moreover, a bandwidth related metric is proportional to energy and process-
ing requirements and it has been shown that even delay constraints can be
expressed in terms of equivalent bandwidth[25]. In the remainder of this
chapter we will present the state-of-the-art in the study of the bandwidth
aspect of scalability. Theoretical results and insight into the scalability lim-
its of ad hoc routing were enabled by the introduction of the Total Overhead
metric in [22, 11].

The reader interested in other aspects of scalability, as for example mem-
ory requirements may want to take a look at [26].

3.2 Communication Overhead: Conventional Notions

Traditionally, the term (communication) overhead has been used in relation
to the control overhead, that is, the amount of bandwidth required to con-
struct and maintain a route. Thus, in proactive approaches such as Standard
Link State (SLS) and Distance Vector (DV) the communication overhead
has been expressed in terms of the number of packets exchanged between
nodes in order to maintain the node’s forwarding tables up-to-date. In re-
active approaches such as Dynamic Source Routing (DSR) and Ad hoc On
Demand distance Vector (AODV), the communication overhead has been
described in terms of the bandwidth consumed by the route request/reply
messages (global or local). A primary goal of ad hoc routing protocol re-
search has been to design protocols that keep this control overhead low.
While it is true that the control overhead significantly affects the proto-
col behavior, it does not provide enough information to facilitate a proper
performance assessment of a given protocol since it fails to include the im-
pact of suboptimal routes on the protocol’s performance. As the network
size increases above, say, 100 nodes, keeping route optimality imposes an
unacceptable cost under both the proactive and reactive approaches, and
suboptimal routes become a fact of life in any scalable routing protocol.
Suboptimal routes are introduced in reactive protocols because they try
to maintain the current source-destination path for as long as it is valid,
although it may no longer be optimal. Also, local repair techniques try
to reduce the overhead induced by the protocol at the expense of longer,
non optimal paths. Proactive approaches introduce suboptimal routes by
limiting the scope of topology information dissemination (e.g. hierarchi-
cal routing [15, 12]) and/or limiting the time between successive topology

14



information updates dissemination so that topology updates are no longer
instantaneously event-driven (e.g GSR [20]).

This leads to the question : how can we define overhead so that it in-
cludes the effect of suboptimal routes in capacity limited systems? We need
to do this since suboptimal routes not only increase the end-to-end delay but
also result in a greater bandwidth usage than required. This extra bandwidth
is an overhead that may be comparable to the other types of overhead. Ap-
proaches that attempt to minimize only the control overhead may lead to
the (potentially erroneous) conclusion that they are “scalable” by inducing
a fixed amount of control overhead, while in practice the resulting perfor-
mance is seriously degraded as the extra bandwidth overhead induced by
suboptimal routes increases with the network size. In the next subsections
we discuss a more comprehensive definition of overhead that is more useful
in the comparative analysis of protocols.

3.3 Emerging concept: Total (Communication) Overhead

In order to quantify the effect of a routing protocol on the network per-
formance, the minimum traffic load of the network as a routing protocol-
independent metric is defined as follows:

Definition 3.1 The minimum traffic load of a network, is the minimum
amount of bandwidth required to forward packets over the shortest distance
(in number of hops) paths available, assuming all the nodes have instanta-
neous a priori full topology information.

The above definition is independent of the routing protocol being em-
ployed, since it does not include the control overhead but assumes that all
the nodes are provided a priori global information. This might be possible
in fixed networks when a node is provided with static optimal routes, and
therefore there is no bandwidth consumption above the minimum traffic
load. On the other hand, in mobile scenarios this is not possible. Due to the
unpredictability of the movement patterns and the topology they induce,
even if static routes are provided so that no control packets are needed, it is
extremely unlikely that these static routes remain optimal during the entire
network lifetime. In an actual mobile ad hoc network, the bandwidth usage
would be greater than the minimum traffic load value. This motivated the
following definition of the total overhead of a routing protocol.
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Definition 3.2 The total overhead induced by a routing protocol X is the
difference between the total amount of bandwidth actually consumed by the
network running X minus the minimum traffic load.

Thus, the actual bandwidth consumption in a network will be the sum
of a protocol independent term, the minimum traffic load, and a protocol
dependent one, the total overhead. Obviously, effective routing protocols
should try to reduce the second term (total overhead) as much as possible.
The different sources of overhead that contribute to the total overhead may
be classified into reactive, proactive, and suboptimal routing overhead.

The reactive overhead of a protocol is the amount of bandwidth consumed
by the specific protocol to build paths from a source to a destination, after
a traffic flow to that destination has been generated at the source. In static
networks, the reactive overhead is a function of the rate of generation of
new flows. In dynamic (mobile) networks, however, paths are (re)built not
only due to new flows but also due to link failures in an already active path.
Thus, in general, the reactive overhead is a function of both the traffic and
the rate topology change.

The proactive overhead of a protocol is the amount of bandwidth con-
sumed by the protocol in order to propagate route information before it is
needed. This may take place periodically and/or in response to topological
changes.

The suboptimal routing overhead of a protocol is the difference between
the bandwidth consumed when transmitting data from all the sources to
their destinations using the routes determined by the specific protocol, and
the bandwidth that would have been consumed should the data have followed
the shortest available path(s). For example, consider a source that is 3
hops away from its destination. If a protocol chooses to deliver one packet
following a k (k > 3) hop path (maybe because of out-of-date information,
or because the source has not yet been informed about the availability of a
3 hop path), then (k — 3) * packet_length bits will need to be added to the
suboptimal routing overhead computation.

The total overhead provides an unbiased metric for performance com-
parison that reflects bandwidth consumption. Despite increasing efficiency
at the physical and MAC-layers, bandwidth is likely to remain the limiting
factor in terms of scalability.

16



3.4 Overhead: Achievable Regions and Operating Points

Having defined a fair metric for overhead, we now ask : is a pure proactive
or a pure reactive protocol the best approach for routing scalability? What
is the desirable relation/balance between the different classes of overhead in
a scalable routing protocol?

We begin by noting that the three different overhead sources mentioned
above are locked in a 3-way trade-off since, in an already efficient algorithm,
the reduction of one of them will most likely cause the increase of one of the
others. For example, reducing the ‘zone’ size in the Zone Routing Protocol
(ZRP) [17, 18] will reduce ZRP’s proactive overhead, but will increase the
overhead induced when ‘bordercasting’ new route request, thus increasing
ZRP’s reactive overhead. The above observation leads to the definition of
the achievable region of overhead as the three dimensional region formed by
all the values of proactive, reactive, and suboptimal routing overheads that
can be achieved (induced) by any protocol under a given scenario (traffic,
mobility, etc.). Figure 3 shows a typical 2-dimensional transformation of this
‘achievable region’ where two sources of overhead (reactive and suboptimal
routing) have been added together for the sake of clarity. The horizontal axis
represents the proactive overhead induced by a protocol, while the vertical
axis represents the sum of the reactive and suboptimal routing overheads.

It can be seen that the achievable region is convex 3, lower-bounded by
the curve of overhead points achieved by the ‘efficient’ (i.e. minimizing some
source of overhead given a constraint being imposed on the others) protocols.
For example, point P is obtained by the best pure proactive approach given
that optimal routes are required — that is, given the constraints that the
suboptimal and reactive overheads must be equal to zero. Similarly, point R
is achieved for the best protocol that does not use any proactive information.
Obviously, the best protocol (in terms of overhead) is the one that minimizes
the total overhead achieving the point Opt (point tangent to the line x +y =
K, where K is a numerical constant).

Different scenarios result in different slopes of the boundary of the achiev-
able region and consequently different positions for Opt. For example, if the
traffic increases (more sessions) or diversifies, R moves upward (pure reac-
tive protocol induces more overhead) and, if mobility is low P moves to the

3To see that the achievable region is convex, just consider the points Py and P» achieved
by protocols P; and P2. Then, any point APi + (1 — A\)P> can be achieved by engaging
protocol Ps that behaves as protocol P; a fraction A of a (long) period of time and as
protocol P» the remainder of the time.
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Figure 3: Overhead’s achievable region.

left (pure proactive protocol induces less overhead) and may cause Opt to
coincide with the point P (pure proactive protocol with optimal routes).
The reverse is also true as the mobility rate increases and the traffic diver-
sity /intensity decreases. Figure 4 shows how the boundary of the achievable
region is (re)shaped as the network size increases. The lower curve corre-
sponds to the boundary region when the network size is small. The effect
of increasing the network size is to ‘pull’ the boundary region up. However,
the region displacement is not uniform along the X and Y axes as will be
discussed next.

Pure proactive protocols, such as SLS, may generate a control message
(in the worse case) each time a link change is detected. Each control message
will be retransmitted by each node in the network. Since both the gener-
ation rate of control messages and the number of message retransmissions
increases linearly with network size (IV), the total overhead induced by pure
proactive algorithms (that determine the point P) increases as rapidly as
N2. Pure reactive algorithms, such as DSR without the route cache option,
will transmit route request (RREQ) control messages each time a new ses-
sion is initiated. The RREQ message will be retransmitted by each node in
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Figure 4: Change in achievable region due to size.

the network. Since both the rate of generation of RREQ and the number of
retransmissions required by each RREQ message increases linearly with N,
the total overhead of a purely reactive protocol (the point R) increases as
rapidly as N2.

On the other hand, the overhead of protocols at ‘intermediate points’,
such as HierLS and ZRP, may increase more slowly with respect to N. In [11]
it is shown that under a reasonable set of assumptions HierLS’s and ZRP’s
overhead grows with respect to IV is roughly N'® and N6 | respectively.

Summarizing, it can be seen that points P and R increase proportion-
ally to ©(N?) whereas an ‘intermediate’ point as HierLS increases almost
as O(N1?). * Referring again to Figure 4, it is easy to see that the extreme
points are stretched “faster” than the intermediate points. Thus, as size
increases, the best operating point is in the “maiddle” region where the proac-
tive, reactive, and suboptimal routing overheads are balanced. One might

“Standard asymptotic notation is employed. A function f(n) = Q(g(n)) [similarly,
f(n) = O(g(n))] if there exists constants c1 and ny [similarly, c2 and ns] such that c1g(n) <
f(n) [similarly f(n) < cag(n)] for all n > n; [similarly, n > ns]. Also, f(n) = ©(g(n)) if
and only if f(rn) = Q(g(n)), and f(n) = O(g(n)).
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reasonable argue that in order to achieve high scalability, one should oper-
ate in the intermediate region where suboptimal routes are present. In other
words, suboptimal routes are a fact of life for ultimate scalability.

3.5 A Formal Definition of Scalability

As mentioned before, there is no established scalability metric for ad hoc
networks. In this chapter we will follow the definitions and framework pre-
sented in [11] since they provide us with tractable models that capture the
bandwidth aspects of routing protocol’s scalability and properly distinguish
a routing protocol scalability properties and limits from the scalability prop-
erties and limits inherent to the network (independent of the routing algo-
rithm — if any® - run over it).

The key idea here is to separate out the concepts of network scalability
and protocol scalability. Some networks are inherently unscalable and some
are inherently scalable. It is only for the latter class that demanding pro-
tocol scalability — as traditionally understood the term — makes sense. We
elaborate on this below.

Let’s start by the intuitive definition of scalability:

Definition 3.3 Scalability is the ability of a network to support the in-
crease of its limiting parameters.

Thus, scalability is a property. In order to quantify this property, the
concept of minimum traffic load presented in Subsection 3.3, definition 3.1,
is used to define the network scalability factor:

Definition 3.4 Let Tr(\, A2,...) be the minimum traffic load ezperi-
enced by a network under parameters \i, Ao, ... (e.g. network size, mobility
rate, data generation rate, etc.). Then, the network scalability factor of
such a network, with respect to a parameter \; ( Uy, ) is defined to be :

def . log Tr(A1, A2, ...)
= lim
Aj—ro0 IOg Az

0,

7

The network scalability factor is a number that asymptotically relates the
increase in network load to the different network parameters. For example,

%Since the concepts are generic, they cover even the case of static networks which may
use static, pre-defined routes.
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let’s consider the most efficient wireless ad hoc networks : the class of topol-
ogy controlled ad hoc networks. For this class of networks the minimum
traffic load Tr(Ne, A\, N) as a function of the per node rate of link change
A, per node traffic \;, and network size N is ©(\N!), ¢ and therefore
\If)\c == 0, \If)\t == ]_, and \IfN = 1.5.

The network scalability factor may be used to compare the scalability
properties of different networks (wireline, mobile ad hoc, etc.), and as a
result of such comparisons we can say that one class of networks scales
better than the other. However, if our desire is to assess whether a network
is scalable (an adjective) with respect to a parameter \;, then the network
rate dependency on such a parameter must be considered.

1

Definition 3.5 The network rate R"! of a network is the mazimum num-
ber of bits that can be simultaneously transmitted in a unit of time. For the
network rate (R"¢') computation, all successful link layer transmissions
must be counted, regardless of whether the link layer recipient is the final
network-layer destination or not.

Definition 3.6 A network is said to be scalable with respect to the param-
eter \; if and only if, as the parameter \; increases, the network’s mini-
mum traffic load does not increase faster than the network rate (R™¢!)
can support. That is, if and only if:

1 net .
t Ai—00 ].Og )\l

For example, it has been proved that in mobile ad hoc networks at
most O(N) successful transmissions can be scheduled simultaneously (see
for example [27, 28]). The class of ad hoc networks considered before (i.e.
resulting from applying power control techniques) are precisely the class
of networks that achieves that maximum network rate. Thus, in order for
this class of ad hoc network to be regarded as scalable with respect to
network size, we would need that ¥y < 1. Unfortunately, this is not the
case (recalling that for these networks Wy = 1.5) and as a consequence this
(wide) class of ad hoc networks are not scalable with respect to network

SEach node generate \; bits per seconds, that must be retransmitted (in average) L
times (hops). Thus, each node induce a load of A\¢L, which after adding all the nodes
results in a 7r(\e, A\e, N) = M NL. Since, L, the average path length, is ©(v/N), the
above expression was obtained in [11].
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size. 7 Fully connected wireline networks, on the other hand, exhibit a
network scalability factor U = 1 while its network rate R™ increases as
fast as ©(IN?), and therefore they are scalable with respect to network size
(in the bandwidth sense). Note, however, that this scalability requires the
nodes’ degree to grow with the network size which may become prohibitely
expensive.

Similarly, since the network rate does not increase with mobility or traffic
load, then a network will be scalable w.r.t. mobility and traffic if and only if
Uy, = 0 and ¥y, = 0, respectively. Again, considering topology-controlled
ad hoc networks we notice that they are scalable w.r.t. mobility (¥, = 0),
but are not scalable w.r.t. traffic (¥, =1).

Note that similar conclusions may be drawn for scalability w.r.t. ad-
ditional parameters as for example network density, transmission range (,
etc. that are not being further considered in this chapter. For example,
as transmission range increases (and assuming an infinite size network with
regular density) the spatial reuse decreases and as a consequence network
rate decreases as rapidly as ¢2. Thus, ¥, should be lower than —2 for the
network to be deemed scalable. Since the minimum traffic load will only
decrease linearly w.r.t. ¢ (paths are shortening), ¥, = —1, and therefore ad
hoc networks are not scalable w.r.t. transmission range. This observation is
the main reason behind our focusing on networks with power control, where
the transmission range is kept in line so that the network degree is kept
bounded.

Now, after noticing that mobile ad hoc networks are not scalable with
respect to size and traffic, one may ask : what does it mean for a routing
protocol to be scalable?. The remaining of this subsection will clarify this
meaning.

Definition 3.7 Routing protocol’s scalability s the ability of a rout-
ing protocol to support the continuous increase of the network parameters
without degrading network performance.

In other words, the scalability of a routing protocol is dependent on the
scalability properties of the network the protocol is running over. That is,

"It has been shown in [28] that if the network applications can support infinitely long
delays and the mobility pattern is completely random, then the average path length may
be reduced to 2 (O(1)) regardless of network size and, as a consequence, that network
scalability factor with respect to network size Wy is equal to 1. Thus, those ad hoc
networks (random mobility and capable of accepting infinitely long delays) are the only
class of ad hoc networks that are scalable with respect to network size.
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the network’s scalability properties provide the reference level as to what to
expect of a routing protocol. If the overhead induced by a routing protocol
grows faster than the network rate (eventually depleting the available band-
width) but slower than the minimum traffic load, the routing protocol is not
degrading network performance, which is being determined by the minimum
traffic load. Roughly speaking, if a type of network can handle thousands of
nodes, then an scalable routing protocol for this type of networks should be
able to run over the thousand-node network without collapsing. But, if the
network can only handle hundreds of nodes, the fact that a routing protocol
collapses when run over thousand of nodes does not mean that the routing
protocol is not scalable for this type of network. The routing protocol is not
degrading network performance at the 100-node level. Performance is being
dominated by the network limitations (minimum traffic load versus network
rate). There is no point in requiring the routing protocol to operate at a
point where the network collapses on its own!.

From the above discussion it is clear that a routing protocol may be
deem to be scalable or not only in the context of the underlying network
the protocol is running over. This chapter covers the scalability of routing
protocol running over wireless ad hoc networks; specifically the (wide) class
of networks defined by assumptions a.l-a.8.

To quantify a routing protocol scalability, the respective scalability factor
is defined, based on the total overhead concept presented in Subsection 3.3,
definition 3.2, as follows:

Definition 3.8 Let X,,(\1, A2, ...) be the total overhead induced by rout-
ing protocol X, dependent on parameters i, Az, ... (e.g. network size, mo-
bility rate, data generation rate, etc.). Then, the Protocol X’s routing pro-
tocol scalability factor with respect to a parameter \; (pii ) is defined
to be :

IOg Xov()\la )\2, .. )
Ai—00 log )\l

The routing protocol scalability factor provides a basis for comparison
among different routing protocols. Finally, to assess whether a routing pro-
tocol is scalable the following definition is used:

Definition 3.9 A routing protocol X is said to be scalable with respect
to the parameter X\; if and only if, as parameter \; increases, the total
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overhead induced by such protocol (X,,) does not increase faster than the
network’s minimum traffic load. That s, if and only if:

Pf\i < Uy,

Thus, for the class of topology-controlled ad hoc networks, a routing
protocol X is scalable with respect to network size if and only if px < 1.5;
it is scalable w.r.t. mobility rate if and only if pi(lc < 0; and it is scalable
w.r.t. traffic if and only if pi(t <1

Using the above definitions, we are now ready to assess the scalability
of protocols described in Section 2.

4 Results on Scalability of Ad Hoc Routing Pro-
tocols

In this section, we present an overview of the main results for bandwidth-
related scalability for the representative set of routing protocols described in
Section 2. The interested reader is referred to [22, 11] for more information
about the derivations.

4.1 Scalability Dimensions

Scalability is often interpreted as the ability to handle increasing size. While
the size of an ad hoc network is a key parameter affecting the scalability, it
is by no means the only one. Other scalability dimensions include mobility
(for mobile ad hoc networks), network density, network diameter, traffic
diversity, energy etc. These parameters may influence the design of the
network control mechanisms at various layers. For instance, an increase in
the diameter of a network implies a higher latency for control information
propagation, leading to a greater risk of inconsistent routes and instability.
Similarly, an increase in density results in decreased spatial reuse of the
spectrum and consequent reduction in capacity.

Figure 5 shows some key scalability dimensions and their effect on the
lower four layers of the ad hoc network stack. Different protocols may exhibit
different levels of scalability with respect to each of these dimensions, and
an understanding of this is essential to an informed choice of a protocol for
a given application.

Out of the different parameters shown, we observe that size, density,
diameter, and transmission range (not shown) are related. For a given net-
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imension
layer Size Mobility | Density | Diameter
Transport X X
Network @ @ X X
Link/MAC X X
Physical X

Figure 5: Scalability dimensions and the layers. An ‘X’ indicates that the scala-
bility problem involving the dimension representing the column manifests itself at
the layer representing the row. A circle around an ‘X’ indicates combinations that
we address in this chapter.

work size and density, different transmission power levels will result in differ-
ent combinations of node degree and network diameter (longer transmission
range will result in higher node degree and smaller network diameters). The
state of the art in the area of topology control for ad hoc networks pro-
vides effective algorithms which adjust the transmission power in order to
obtain more advantageous topologies. It is well understood that in order
to increase the overall network performance, the average node degree must
remain bounded except when required to improve connectivity (a reasonable
goal is to have a biconnected network). Thus, the density dimension can be
addressed by means of effective topology control algorithms (see for exam-
ple [29]). For this reason, in the remainder of this chapter we will consider
topology-controlled networks where the density is not a limiting factor and
where the network diameter and size are mutually dependent. Thus, we will
only consider the network size and mobility dimensions in our discussion of
scalability. Of course no treatment of scalability would be complete without
addressing the third scalability dimension (not shown in the figure for being
self-evident at every layer) : traffic load.

4.2 Network Model

In order to obtain concrete, closed-form expressions for total overhead in-
duced by the representative set of protocols described in Section 2 it is
necessary to refine the class of network under study. This refinement was
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done favoring the most common, but challenging types of networks. Alter-
natively expressions can be derived for other classes of network if they are
of interest.

However, in order to maintain focus and obtain the desired insight, in
the remainder of this chapter we will follow the work in [11] and will restrict
our attention to the (broad) class of networks defined by the assumptions
presented below.

Let N be the number of nodes in the network, d be the average in-
degree, L be the average path length over all source destination pairs, A\;. be
the expected number of link status changes that a node detects per second,
At be the average traffic rate that a node generates in a second (in bps),
and g be the average number of new sessions generated by a node in a
second. The following assumptions, motivated by geographical reasoning
and the availability of desirable topology control techniques, define the kind
of scenarios under consideration:

a.l As the network size increases, the average in-degree d remains constant.

a.2 Let A be the area covered by the N nodes of the network, and o = N/A
be the network average density. Then, the expected (average) number
of nodes inside an area A; is approximately o * Aj.

a.3 The number of nodes that are at distance of k or less hops away from a
source node increases (on average) as ©(d * k?). The number of nodes
exactly at & hops away increases as O(d * k).

a.4 The maximum and average path length (in hops) among nodes in a
connected subset of n nodes both increase as ©(y/n). In particular,
the maximum path length across the whole network and the average
path length across the network (L) increases as ©(v/N).

a.5 The traffic that a node generates in a second (\;), is independent of the
network size N (number of possible destinations). As the network size
increases, the total amount of data transmitted/received by a single
node will remain constant but the number of destinations will increase
(the destinations diversity will increase).

a.6 For a given source node, all possible destinations (N — 1 nodes) are
equiprobable and — as a consequence of a.5 — the traffic from one node
to every destination decreases as ©(1/N).
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a.7 Link status changes are due to mobility. A;. is directly proportional to
the relative node speed.

a.8 Mobility models : time scaling.

Let fi/0(z,y) be the probability distribution function of a node posi-

tion at time 1 second, given that the node was at the origin (0,0) at

time 0. Then, the probability distribution function of a node position

at time ¢ given that the node was at the position (x4, ys,) at time tg
T—Tt, y*yto)'

is given by ft/to (xvyaxtoayto) = (tfio)z fl/O( t—ty ° t—tp

Similarly, let go/;(x,y) be the probability distribution function of a
node position at time 0, given that it is known that the node posi-
tion at time 1 will be (0,0). Then, the probability distribution func-
tion of a node position at time ¢t < t; given that the node will be

at the position (z¢,yr,) at time t is given by g, (v, y, ¢, u1,) =

1 T—Tty Y=Yty
(tlft)290/1( e i)

For a discussion on the rationale behind these assumptions (besides the
existence of an underlying topology control mechanism) the reader is referred
to [22, 11].

4.3 Asymptotic Behavior of Ad Hoc Routing Protocols

Table 1 shows asymptotic expressions for the proactive, reactive and sub-
optimal routing overhead (in bps) for the protocols described in Subsection 2
when run over the (wide) class of networks determined by assumptions a.l
through a.8.

PF induces no proactive or reactive overhead. But each packet generated
(there are \¢N such packets per second) is flooded to the entire network
(retransmitted N times), and therefore its sub-optimal routing overhead is
linearly dependent on the traffic rate and on the square of the network size.

SLS builds optimal routes proactively, so there is no reactive or subop-
timal routing overhead associated with it. Each time there is a link change
(AeN times per second) an LSU is flooded throughout the entire network
(N retransmissions) resulting in a proactive overhead that increases linearly
with the rate of per node link changes and the square of the network size.

DSR-noRC has no proactive component. Its reactive overhead is lower
bounded by the overhead induced by the route discovery procedures in re-
sponse to new sessions (A;/N new sessions per unit of time). DSR-noRC
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Protocol Proactive Reactive Suboptimal

Overhead Overhead Routing
Overhead

PF — — O(MN?)

SLS O(N\eN?) — —

DSR-noRC — Q(A\sN?) Q(A\:N?log, N)

O((As + )‘IC)NZ)

HierLS Q(sN5 + )\ N) - O(N\ NPT

ZRP O(uNcN) | QN i) ONN?/ /i)

HSLS O(N/t.) - O((eMelele — 1)\, N15)

Table 1: Asymptotic results for several routing protocol for mobile ad hoc
networks.

reactive overhead is upper bounded by assuming that each link change will
trigger a new route maintenance procedure and that each route maintenance
procedure will cause a global flooding (i.e. local repair did not succeed). The
combined effect of these assumptions is that each link change event has the
same effect as a new session event and therefore the combined rate of events
— (As + Nie)N new sessions plus link changes per second — results in the
upper bound shown in table 1. Finally, DSR-noRC sub-optimal routing
overhead’s lower bound shown in Table 1 was derived by considering the
extra bits ©(vNlogaN) required to add the source route to each packet.
Recall that log2 [N bits are required to specify a node address, and that the
average route length is L = ©(v/N).

Regarding HierLS, depending on the location management approach be-
ing used, HierLLS may or may not induce reactive overhead. For example, if
the location management approach requires that a node pages one or more
location servers in order to find the current location of a destination and be
able to build routes towards him, then the paging packet(s) will contribute
to the reactive overhead. Table 1 shows HierLS’s overhead results when a
pure proactive location management is employed and therefore there is no
reactive overhead associated with HierLLS. In a pure proactive location man-
agement scheme (referred to as LM1 elsewhere in this chapter) each node
S has a local copy of a location table where there is a map between every
node in the network and the highest level cluster that contains the node but
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does not contain node S. The advantage of such a scheme is that there is
no location server that may constitute single-point-of-failure for the entire
network.

For HierLS-LM]1, table 1 shows that there is no reactive overhead and
that the proactive overhead is dominated by the location update cost ©(sN1)
— where s is the average node speed — which is far greater than the LSU
propagation cost ©(\,.N). This shows that in HierLS, for higher levels in
the hierarchy, it is more likely to have cluster membership changes (due
to node movements being unrelated to the cluster selection) than it is to
have virtual link changes (since individual link changes get buffered out by
the large number of links forming a virtual link). The sub-optimal routing
overhead is determined by observing that for a fixed number of hierarchi-
cal levels, the average path length is a percentage above the optimal path
length, and therefore the sub-optimal routing overhead was proportional to
the actual rate of traffic transmission (hop-by-hop, not source-destination)i
of ©(A:N'?). Further observing that the percentage of sub-optimality of
the routes increased with the number of hierarchical levels, which in turn
increased with the network size, determined the inclusion of the value § (a
small constant value dependent on the number of nodes in a cluster) in the
sub-optimal routing expression.

For ZRP, the proactive overhead is dependent of the size of a node’s zone
(ng). The bigger the zone the larger number of proactive control message
that will need to be retransmitted. The reactive overhead, on the contrary,
will decrease with the zone size. However, the reactive overhead does not
vary inversely proportional to the zone size nj but it depends on the square
root of it. To understand this, consider that increasing the zone size will
increase the area that each border node ‘covers’. The larger the zone size
the smaller the number of border nodes required to cover the entire net-
work will be. Even though the border node zones are overlapping, still it is
true that the number of border nodes required will be ©(N/\/ny). Thus, as
the zone size increases a source node S in ZRP will need to poke a smaller
number of ‘border’ nodes. However, the distance between border nodes also
increases (in average ©(,/ny)) resulting in the expression shown in Table 1.
For ZRP’s sub-optimal routing overhead an upper bound is provided that
shows that ZRP’s sub-optimal overhead does not affect ZRP’s total overhead
expression since it (sub-optimal routing) is (asymptotically) dominated by
the reactive overhead. The sub-optimal routing upper bound is derived by
considering the maximum route length after subsequent local repair proce-
dures for long lived sessions. Since two border nodes, non-adjacents, in a
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ZRP’s source route may not belong to each other zone (otherwise the route
may be shortcutted) then the number of border nodes in a path is at most
N/ny. Since border nodes are ©(,/ny) hops away from each other, then the
maximum length of a packet roue to its destination is ©(/N//nt), resulting
in the expression shown in Table 1.

For HSLS, it is obvious that the proactive overhead will be inversively
proportional to the LSU generation period 1/t.. However, the dependency
on network size is not so obvious. t can be understood if we consider that
in HSLS, the proactive overhead is dominated by the global LSUs, that is,
LSUs that traverse the entire network. The next type of LSU in order of
importance for the proactive overhead computation is the LSUs with the
next higher time-to-live field. This is due to the fact that decreasing the
time-to-live field by a factor of 2 reduces the number of LSU retransmissions
by a factor of 4 while only increasing the frequency of transmissions by a
factor of 2, providing a combined effect of reducing the proactive overhead
induced by these LSUs by a factor of 2. When considering the global LSUs,
we may notice that their generation rate according to HSLS rules is inversely
proportional to the network diameter, which is ©(v/N), resulting in the
expression on Table 1

HSLS has no reactive overhead. Determination of HSLS sub-optimal
routing overhead is not trivial, but the result can be understood by consid-
ering that for a given mobility rate and generation period, the probability
of making an erroneous next-hop decision is bounded independently of the
distance to the destination. This independence of the distance to the des-
tination is a consequence of the LSU generation/propagation mechanism
used in HSLS, which imposes a quasi-linear relationship between distance
and routing information latency. Thus, the ratio of information latency
(related to position uncertainty) over distance is bounded and so is the un-
certainty about the destination angular position, which is the only critical
information required to make a best next hop decision. Finally, having a
bounded probability of a bad next hop decision, regardless of distance, en-
sures that the paths built by HSLS are just a fraction from optimal. This
fraction depends on A\ and t. as shown in Table 1.

As we may see from Table 1 and the above discussion, ZRP and HSLS
behavior depends on configurable parameters. Table 2 shows the total over-
head obtained when the routing protocol parameters are chosen to optimize
performance. Values on Table 2 represents the best each protocol can do.

These asymptotic expressions provide valuable insight about the behav-
ior of several representative routing protocols. They help network designers
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H Protocol ‘ Total overhead (best) ‘ Cases H

PF O(MN?) Always

SLS O(\N?) Always

DSR-noRC | Q(A;N? + N\ N?log, N) Always

HierLS Q(sNP + NN + N N5 [ LM1

ZRP Q()\ZCNZ) if \je = O()\s/\/ﬁ)
QO AIND) if \ie = QA /VE)

and A\ = O(A\;N)
QA N?) if \je = Q(A\sN)

HSLS O(VANAN?) if A = O(\y)

O(NeN?) if e = Q(\)

Table 2: Best possible total overhead bounds for mobile ad hoc¢ networks
protocols.

to better identify the class of protocols to engage depending on their op-
erating scenario. For example, if the designer’s main concern is network
size, it can be noted that HierLLS and HSLS scale better than the others.
Moreover, by observing the asymptotic expressions we may notice that when
information dissemination (either link state, route request, or data itself) is
flood to the entire network, the routing protocol scalability factor with re-
spect to network size is equal to 2. Splitting the information dissemination
at two different levels, like in 2-level hierarchical routing, NSLS, ZRP, and
DREAM, can achieve a reduction in the routing protocol scalability factor
down to 1.66. Allowing the number of levels of information dissemination
grow as required when the network size increases, as done explicitly by m-
level HierLLS and implicitly by HSLS, can further achieve a reduction of the
scalability factor down to 1.5, which seems to be the limit on performance
for routing protocols for ad hoc networks defined by a.l through a.8.

If traffic intensity is the most demanding requirement, then SLS, and
ZRP are to be preferred since they scale better with respect to traffic (total
overhead is independent of \;); HSLS follows as it scales as ©(y/)\;), and PF,
DSR, and HierLS are the last since their total overhead increases linearly
with traffic. ZRP scales well with respect to traffic load since it can adapt its
zone size, increasing it to the point that ZRP’s behaves a a pure proactive
algorithm (e.g. as SLS). HSLS scales better than PF, DSR, and HierLS since
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as traffic load increases, HSLS increases the value of its LSU generation rate
(1/t.), which causes more LSUs to be injected into the network, reducing
routing information latency and improving the quality of the routes. This
points out two observations: (1) as traffic load increases, the quality of the
routes becomes more and more important; (2) as traffic increases, more
bandwidth should be allocated for dissemination of routing information, so
that the quality of the routes are improved. The second observation
contradicts the widely held belief that as traffic load is increased,
less bandwidth should be allocated to control traffic and let more
bandwidth available for user data.

With respect to the rate of topological change, we observe that PF may
be preferred (if size and traffic are small and the rate of topological change
increases too rapidly), since its total overhead is independent of the rate of
topological change. Provably next will be ZRP and DSR since their lower
bounds are independent of the rate of topological changes. The bounds
are not necessarily tight, and ZRP’s and DSR’s behavior should depend
somewhat of the rate of topological change. Finally, for SLS, HierLS, and
HSLS we know (as opposed to DSR and ZRP where we suppose) that their
total overheads increase linearly with the rate of topological change.

It is interesting to note that when only the traffic or the mobility is
increased (but not both), ZRP can achieve almost the best performance in
each case. However, if mobility and traffic increase at the same rate; that
is, \ie. = ©(\) and Ay = O(\) (for some parameter \), then ZRP’s total
overhead (Q(AN19%)) will present the same scalability properties as HSLS’s
(©(AN'?)) and HierLS’s (O(AN15%9)) with respect to \, with the difference
that ZRP does not scale as well as the other two with respect to size.

These and more complex analyses can be derived from the expression
presented, when different parameters are modified simultaneously according
to the scenario the designer is interested in.

Comparing HSLS and HierLS results, it is counter-intuitive to observe
that HSLS —a flat, relatively easy to implement protocol — has better asymp-
totic properties than HierLLS with respect to network size. This means that
as size increases HSLS eventually outperforms HierLlS. This contradicts
the widely held belief that as size increases the only routing so-
lution is to shift from a flat to a hierarchical paradigm. However,
this section discussion suggests that building/maintaining/managing a com-
plex routing hierarchy (a potential implementation nightmare) may not be
necessary. The next section goes deeper into this issue, comparing flat and
hierarchical routing techniques for ad hoc networks, trying to answer the
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question which is better: flat or hierarchical?.

5 Flat vs. Hierarchical Routing

Perhaps the most significant result from previous sections is this: a pro-
tocol that restricts the scope of control messages and takes the penalty of
sub-optimal routes is more scalable than one that insists on “full informa-
tion”. For instance, as the network size grows while the available bandwidth
remains fixed, traditional routing protocols such as SLS and DV quickly col-
lapse, since they waste all the available bandwidth in disseminating routing
protocol control messages. On the other hand, all of the protocols with
sub-exponent-2 asymptotic scalability (ZRP, HierLS, FSLS) are “limited in-
formation” protocols.

Within this class of limited information protocols however, it appears
that one can achieve the scalability goal using either a “flat” routing ap-
proach or a hierarchical approach. The question then is: Is the hierarchical
approach better or flat? Or, more specifically: Under which circumstances
does a flat approach outperform a hierarchical one?

In this section, we compare and contrast the two approaches, bringing
out the advantages and disadvantages of each. We take a representative
protocol from each class — namely HSLS for flat, and HierLLS for hierarchical
— for a direct comparison using simulation. In a sense then, this section is
the “finals” of a tournament, where all but the best have been eliminated
and the interest zooms in on the two best.

This section is organized as follows. In the first subsection we present a
taxonomy of the hierarchical approaches, and comment on the different sub-
classes from a bandwidth-scalability and implementation-complexity per-
spective. In the second subsection, we describe the main techniques for
scaling flat routing protocols. Emphasis is on the most promising class of
techniques, the FSLS family of algorithms, particularly the optimal algo-
rithm in this class, namely the HSLS algorithm.

We then proceed, in the third subsection, to compare hierarchical and
flat routing. In order to obtain concrete results, a representative protocol
for each routing approach is chosen. HSLS, the best algorithm in the FSLS
family, is picked as the representative of flat routing techniques. A highly
efficient m-level hierarchical routing protocol based on MMWN is chosen
as the representative of hierarchical routing. This protocol, while using the
wvirtual gateway abstraction, sets the cost of each virtual link at a given hier-
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archical level to the same value, behaving as if the virtual node abstraction
was used. Thus, this protocol behaves as belonging to the class of HierLS
routing algorithm. This protocol was chosen since it presents good scala-
bility properties without demanding an unreasonably high implementation
cost.

We present a simulation study under moderate stress conditions in order
to capture behavior that could be overlooked by the theoretical analysis.
By virtue of the simulations, practical issues affecting hierarchical and flat
routing protocol performance differently are identified. The level of incidence
of these issues in a given network may shift the relative performance of
the hierarchical and flat routing techniques. Finally, the last subsection
discusses our conclusions from the comparison.

5.1 Hierarchical Routing Techniques

The core of a hierarchical algorithm consists in aggregating nodes into (level-
1) clusters, clusters into superclusters (level-2 clusters) and so on. This
grouping of nodes allows for an abstraction of the routing information. For
example consider the HierLLS algorithm presented in subsection 2.4. In Hi-
erLS a node may consider all clusters (level-1 and up) as virtual nodes in
a virtual topology. In such a topology the set of links between two such
clusters conform a virtual link. In such case, individual link variations will
have a small impact in the virtual (aggregated) link state. If the routing
algorithm restricts the generation of updates such that only changes above
a predetermined threshold trigger updates, then the rate of updates sent as
a response to virtual links’ changes is significantly reduced.

It should be noted that the virtual topology may be built in a different
manner. For example, MMWN [15] chooses the set of links between two
clusters (namely virtual gateways) to become the virtual nodes. MMWN
then chooses the set of nodes inside a cluster, needed to traverse from a
virtual gateway to another in the same cluster, as the virtual link.

Whatever the definition of the virtual topology is, the main characteris-
tics of a hierarchical approach is:

e Nodes are grouped in clusters. Clusters in Superclusters, and so on.
Each cluster defines a cluster leader for coordinating functions.

e Information about nodes far away is aggregated, resulting in smaller
memory requirements for storing topology information, lower process-
ing requirements to build routes, and lower bandwidth requirements
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for propagating traditional (i.e. excluding location management) rout-
ing information updates.

e Due to mobility, a location management scheme is required. Note that
this is a main difference between hierarchical schemes for fixed (e.g.
IP networks) and mobile (e.g. ad hoc) networks.

Hierarchical approaches may then be classified by its cluster and cluster
leader selection algorithm; by the abstraction used to map virtual nodes and
virtual links to the actual elements of the physical world; and by the location
management technique being used. In the next subsections, we present
a quick overview of the current techniques used for hierarchical routing.
Readers interested in a more extensive treatment of the subject will find
reference [30] to be an excellent starting point.

5.1.1 Cluster and Cluster Leader Selection Methods

Clustering techniques may be classified by the radius of the cluster formed;
by the affiliation method used; by the objective (gain) function used in the
affiliation method; and by the cluster leader selection method used.

Cluster Radius
There is a class of clustering techniques that impose the restriction that
the cluster radius (distance, in hops, from the cluster leader or center to
any other node in the cluster) be at most 1 (e.g. LCA[13], CGSR[14], and
ARCJ16]). Thus, two cluster leaders belonging to neighboring clusters will
be at most 2 hops away. The intermediate node in the 2-hop path is called a
gateway node. The advantage of this kind of clustering techniques, especially
if only two levels are being formed, is its simplicity. There are efficient
algorithms that only require local (i.e. one-hop) information in order to make
clustering decisions. These kind of techniques, however, will result in a large
number of level-1 clusters. And, if higher level clusters are to be constructed
by the same procedure, one finds that most of the simplicity advantage is
lost. Thus this method is not particularly scalable. This technique is also
used to build clusters for purposes other than routing: control of access
to the shared medium (i.e. scheduling transmissions), efficient flooding of
information (including routing related information as for example LSUs),
etc.

The other class of clustering techniques does not require the cluster
leader to be in direct communication (e.g. one hop away) from the clus-
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ter leader (e.g. HierLS[11], HSR[12], and MMWN]J[15]). Still, usually they
impose a maximum limit on the distance between a cluster leader and nodes
in the cluster boundaries, mainly for performance reasons. The HierLS al-
gorithm presented in Subsection 2.4 belongs to this class. An advantage
of this class of clustering techniques is that the clustering size (as well as
other parameters) can be adjusted to optimize performance. For example,
if a 2-level network must be formed out of 10000 nodes, a good clustering
technique will result in roughly 100 clusters of 100 nodes each. Of course, for
this cluster size, it will be even better to increase the number of levels in the
network (although it should be kept in mind that building and maintaining
a 3-level hierarchy is as complex as a m-level hierarchy, which is much more
complex than a 2-level one).

Cluster Affiliation Method

Cluster affiliation refers to the way nodes are assigned to clusters. In some
techniques, this decision is left to the node itself. In others, it is the cluster
leader which assigns the nodes to its cluster.

The main advantage of leaving the ‘joining’ decision to the nodes, is that
it allows for distributed algorithm implementation. On the other hand, the
lack of a centralized control, and the latency in propagating control infor-
mation may result in unpredictable dynamics causing, for example, cluster
size to increase to unacceptable levels. This in turn may induce the split-
ting of a cluster, which may result (again due to information propagation
latency) in a cluster that is too small and nodes rejoining the cluster, etc.
In general, clustering affiliations where each node makes its own decisions
are more susceptible to instabilities.

The other approach is to let the cluster leader to make the clustering
assignments (it may ‘grab’ a set of nodes or may assign nodes previously
in its cluster to another clusters). This approach may require the cluster
leader to collect information about nodes more than one hop away, in order
to decide which nodes to ‘grab’. Also, the leader may decide to sequentially
‘grab’ nodes in the boundary of the cluster (resembling the dynamics of the
previous technique when nodes ‘join’ the cluster) or it may grab a large set
of nodes at once. The latter will speed up convergence time but require the
leader to have up-to-date information about nodes outside of its cluster.

Performance objective
Clustering techniques may also be classified by the performance objective
they target. Although one may expect that throughput or a routing per-
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formance metric be the goal of every clustering techniques, in reality the
difficulty of mapping clustering parameters into actual routing performance
metrics results in different hierarchical schemes targeting intermediate goals
that are suspected to have a positive impact on performance.

Some protocols target clusters with balanced size. For example, MMWN
defines a minimum and a maximum size for a cluster, and engages ‘join’ or
‘split” procedures if these boundaries are crossed.

Other protocols target a desired level of connectivity inside the cluster
(i.e. that the nodes inside the cluster form a k-connected) set. Similarly,
the objective may be maximize connectivity of the nodes forming a virtual
gateway (see MMWN [15]). The idea in targeting k-connectivity is to avoid
the cluster to become partitioned in the near future. K-connectivity pro-
vide alternative paths in case of link failures. The idea of maximizing path
availability inside a cluster is further explored in [31], where the authors
propose a cluster formation technique (the (a,t) clustering) that targets the
formation of clusters such that the probability that there will always be a
path between two nodes inside the cluster for the next ¢ seconds is at least
a. The (a,t) clustering technique is mobility adaptive. Since a path avail-
ability is the product of the availabilities of the links forming the path; then
the longer the path the lower the availability. Thus, higher speeds (and
consequently smaller link availability) will result in smaller cluster diameter
(and size). Lower speeds (and therefore lower link volatility) will allow the
cluster diameter (and size) to grow.

Other performance objectives include a minimum level of ‘affiliation’
between a candidate node and the cluster. The ‘affiliation’ may be defined
as the composite bandwidth between the node and all other nodes in the
cluster; the distance to the cluster leader; a measure of similarity between
the candidate node and the node inside the cluster (based on pre-assigned,
task dependent role); or a linear combination of all the above.

Cluster leader selection
Clustering techniques for homogeneous networks usually do not distinguish
between individual nodes, and therefore the identity of the cluster leader
is not relevant. These techniques, however, require the leader selection to
be unique, and therefore they need a common criteria for determining the
cluster leader or a mechanism to solve conflicts if they occur.

A wusual common criteria for cluster leader selection consists of picking
the node with the lowest id among its unclustered neighbors. Since the id of
the nodes do not follow any rational order, this amounts to having a random
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leader selection technique. Actually, there are clustering techniques where
the selection of the leader is explicitly made at random (e.g. NTDR [32]).

At the other hand there are clustering techniques where the leader selec-
tion is preassigned, based on additional knowledge about the scenario. For
example, LANMAR [33] preassigns the cluster leaders based on knowledge
of the mobility patterns of the nodes. In LANMAR the nodes are assumed
to exhibit group mobility, and the group leaders are selected as cluster lead-
ers. Similarly, extra knowledge about a node capabilities: battery power,
extra bandwidth, low mobility/high stability, extra processing power, sus-
ceptibility to destruction, mission role, etc. may be used in pre-determining
the identity of the cluster leader.

Another cluster leader selection technique is based on picking as leader
the node that maximizes a gain function among all the other nodes in its clus-
ter (which initially may just be its 1-hop neighbors). A good gain function
to maximize is the node degree, since a cluster leader with a higher degree
assures that the cluster leader will likely remain connected to the cluster
nodes over time. Besides, high degrees are usually associated with advan-
taged nodes (e.g. higher power, higher elevation, etc.). Even if there are
no advantaged nodes, picking nodes with higher degree will result is cluster
with smaller diameter, which improves performance. An obvious extension
of this criteria is to define the gain function to be equal to the number of k-
neighbors of a node, where k is the expected radius of the cluster. These gain
functions, however, consider the network topology as something static, and
therefore may choose the cluster leader (and the cluster around him) that is
appropriate for a short period of time. Thus, a better gain function should
take into account (as much as possible) node mobility patterns, and based
on this knowledge pick up as cluster leaders those nodes that will maximize
the expected number of k-neighbors over time. SOAP [34, 24] is an exam-
ple of an algorithm implementing such a gain function. It should be noted
that cluster (leader) selection techniques that take into account the mobil-
ity patterns as in LANMAR and SOAP has the potential to reduce or even
eliminate the location management cost associated with hierarchical routing
if the nodes mobility presents strong patterns, such as group mobility. As
we saw in the previous section the location management cost dominates the
link state information dissemination cost for HierLS approaches, so reducing
this former cost will greatly improve performance and may even enable us
to improve HierLS asymptotic performance, by trading off an increase in
the (now small) proactive overhead for a reduction in sub-optimal routing
overhead, resulting in a smaller combined total overhead.
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Finally, the gain function may also be a weighted combination of the
aforementioned quantities, plus additional quantities such as available power,
processing speed, memory available, role, vulnerability, etc. that need to be
pre-configured in each node.

Thus, there is a plethora of criteria for cluster formation. This diversity
is symptomatic of our lack of understanding of the dynamics involved in
clustering formation and maintenance and its impact in the generation of
link state and location management information, the generation of cluster-
ing management messages, and the transient latencies incurred due to the
handling of exception situations (e.g. a cluster leader is destroyed or is tem-
porary partitioned from the cluster). The obscure nature of the impact of
clustering in network performance has been the main obstacle to the design
of highly efficient hierarchical algorithms.

5.1.2 Topology Abstraction Methods

Once the network nodes are organized in the clustering hierarchy, this struc-
ture is used to reduce the topology information that needs to be propagated
inside the network. However, different techniques may be employed.

The HierLS algorithm presented in Subsection 2.4 is an example of a
hierarchical system using the wirtual node abstraction. In the virtual node
abstraction, level-m clusters are considered level-m nodes. Real nodes are
considered level-0 nodes. The set of links connecting real nodes in neigh-
boring level-m cluster forms a level-m virtual link. A node keeps track of
all the level-m virtual node and virtual links inside its level-m + 1 cluster.
Thus, routing information is reduced since a node does not need information
about level-m virtual nodes outside its level-(m + 1) cluster. Subsection 2.4
presents a more detailed explanation of routing using the virtual node ab-
straction.

MMWN]15] is a protocol that uses the virtual gateway abstraction in-
stead of the virtual node abstraction. To illustrate the way the virtual gate-
way abstraction works, consider a network formed by four clusters A, B, C,
and D aligned horizontally as follows: A— B —C —D. A — between B and
C, for example, represents that there are some (physical) links connecting
(physical) nodes in cluster B with nodes in cluster C'. In the virtual gateway
abstraction, each set of links connecting different clusters is called a virtual
gateway and constitute level-1 nodes. Thus, at the level-1 the aforemen-
tioned network has three nodes: A.B, B.C, and C.D. Now, the level-1 link
joining, for example, nodes A.B and B.C'is formed by an aggregation of all
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the paths from nodes in A.B to nodes in B.C. For example, if the link metric
of interest is available bandwidth (for QoS-based routing), then this level-1
link metric is not associated with the number of nodes and links inside node
B, but with the maximum flow from A.B to B.C. Similar aggregation may
be achieved if the link metric of interest is delay, etc.. Similarly, virtual gate-
ways among level-2 cluster constitute level-2 nodes and aggregation of paths
between these virtual gateways constitute level-2 links, and so for. Route
computation is performed almost as in HierLLS, with the difference being that
the objective is to find a virtual gateway neighboring the destination cluster,
as opposed to looking for the destination cluster itself. For example, if a
node inside cluster A in the above example is looking for a node inside clus-
ter D, its Dijkstra’s computation will stop when the virtual gateway C.D is
found. The route obtained will be source —level-0 nodes— A.B— B.C—C.D,
instead of source — level-0 nodes — B — C' — D which would be the case if
the virtual node abstraction were used. Intermediate nodes in the path will
expand the route as necessary, similar to the virtual node abstraction case
(e.g. HierLS).

The virtual node abstraction is more intuitive and therefore easier to
analyze, implement, and debug. However, if QoS constraints are to be sat-
isfied (as for example a minimum required bandwidth) the virtual gateway
abstraction provides better link information aggregation. In the virtual node
abstraction, clusters won'’t be able to properly estimate the virtual link cost
because: (1) virtual links include links in two different clusters, and a cluster
only has information about link inside itself, thus it only has information
about half the link. And (2) the cost of traversing a cluster is dependent on
the entry and exit points. For example, in the case of the A— B —C — D net-
work discussed before, the cost of going from A to C depends on the cost of
traversing cluster B having A.B as an entry point and B.C' as an exit point.
The virtual node abstraction will estimate this cost as the sum of A— B and
B — C', where the cost of A — B is computed without knowledge of the next
link in the path (i.e. B — (') resulting in a lower quality estimate. Roughly
speaking, the virtual node abstraction’s link cost estimates will — at best
— be equivalent to assuming that all paths go through the cluster leaders,
which is a bad estimate. Thus, in general, the virtual gateway abstraction
will produce routes of better quality than the virtual node abstraction. Of
course, the price we pay is the extra complexity in maintaining the virtual
gateway structure in addition to the clusters: some node inside the virtual
gateway must to be chosen as leader and should propagate link state updates
with the latest (virtual) link cost.
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Besides the virtual node and virtual gateway abstractions, other tech-
niques to exploit the hierarchical structure formed include the quasi-hierarchic
algorithm[35, 39] and Landmark routing[36]. Both techniques try to main-
tain optimal (or good) paths toward higher level clusters. Therefore, some
link changes may result in network wide propagation of updates. Thus, if
propagation is event driven, these updates result in higher control overhead
consumption. On the other hand, if information propagation is done peri-
odically, the effect of these long-impact changes is long latency in routing
information propagation which results in poor response to network dynam-
ics.

5.1.3 Location Management Methods

The core of hierarchical routing consists on aggregating information by ef-
ficiently using the clusters built. Therefore, a node no longer has complete
information about how to reach a node outside its level-1 cluster. To de-
termine how to route packets to nodes outside its (level-1) cluster, a node
needs to know the identity of a cluster associated with the destination. The
service that provides the nodes with this information is referred to as Lo-
cation Management (LM). The need of a LM service is a main difference
between hierarchical approaches for static (wireline) and mobile networks.
In static networks, a LM service was not needed since the address of a node
was tied to its location in the hierarchy. Due to mobility, this is no longer
the case.

The LM service can be implemented in different ways, whether proactive
(location update messages), reactive (paging), or a combination of both.
Typical choices are:

LM1 Pure reactive. Whenever a node changes its level-i clustering mem-
bership but remains in the same level-(i+1) cluster, this node sends an
update to all the nodes inside its level-(i + 1) cluster. As an example
let’s consider Figure 1, if node ngo moves inside cluster X.1.5, i.e. it
changes its level-1 cluster membership but does not change its level-2
cluster membership (cluster X.1), then node ny will send a location
update to all the nodes inside cluster X.1. The remaining nodes will
not be informed.

LM2 Local paging. In this LM technique, one node in each level-1 cluster
assumes the role of a LM server. Also, one node among the level-1 LM
servers inside the same level-2 cluster assumes the role of a level-2 LM
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server, and so on up to level-m. The LM servers form a hierarchical
tree. Location updates are only generated and transmitted between
nodes in this tree (LM servers). When a node D changes its level-i
clustering membership, the LM server of its new level-¢ cluster will
send a location update message to the level-(i + 1) LM server, which
in turn will forward the update to all the level-i LM servers inside this
level-(i + 1) cluster. Additionally, the level-(i + 1) LM server checks if
the node D is new in the level-(i + 1) cluster, and if this is the case it
will send a location update to its level-(i + 2) LM server, and so on.

When a level-: LM server receives a location update message regarding
node D from its level-(i + 1) LM server, it updates its local database
with node D’s new location information and forwards this information
to all the level-(i—1) LM servers inside its level-i cluster. Each of these
level-(i — 1) LM servers forwards the location update message to the
level-(i — 2) servers in its level-(i — 1) cluster, and so on until all the
level-1 LM servers (inside node D’s level-(i 4+ 1) cluster) are informed
of the new level-i location information of node D. When a node needs
location information about any node in the network, the node pages
its level-1 LM server for this information.

For example, if node ny in Figure 1 moves inside cluster X.1.5, then
the level-2 location server of cluster X.1 will be notified, who in turn
will notify the location servers of clusters X.1.1 through X.1.7. Al-
ternatively, if node ng had moved inside cluster X.4 instead, then
the location server of cluster X would have been notified, and he in
turn would have trigger notifications to all level-2 and level-1 location
servers inside cluster X. And so on.

LM3 Global paging. LM3 is similar to LM2. In LM3, however, when a
level-i LM server receives a location update from a higher level-(i 4 1)
LM server, it does not forward this information to the lower level (i.e.
level-(i — 1)) LM servers. Thus, a lower level (say level j < i) LM
server does not have location information for nodes outside its level-
j cluster. A mechanism for removing outdated location information
about nodes that left a level-i cluster need to be added to the level-:
clusters LM servers. Basically, a level-1 LM server that detects that
a node left its level-1 cluster will remove the entry corresponding to
this node from its own database, and will inform its level-2 LM server.
The level-2 LM server will wait for a while for a location update from
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the new level-1 cluster (if inside the same level-2 cluster) and if no
such an update is received it will remove the node entry and will
inform its level-3 LM server, and so on until arriving to a LM server
that already has information about the new location of the node. For
example, if node n9 in Figure 1 moves inside cluster X.1.5, then the
location server of that cluster will notify the level-2 location server
of cluster X.1. Additionally, the location server of cluster X.1.1 will
also notify the level-2 location server that node ns does not belong
to that cluster anymore. No other location server will be notified.
Alternatively, if node ns had moved inside cluster X.4 instead, then
the location servers of clusters X.1.1, X.1, and X would had been
updated. Location servers on clusters X.1.1 and X.1 would learn that
node ny does not belong to their clusters anymore, and the location
server of cluster X would know that node ns belonged to cluster X.4.

When a node needs location information about any node in the net-
work, the node pages its level-1 LM server for the information. If the
level-1 LM does not have the required information, it (the level-1 LM
server) pages its level-2 LM server, who in turn pages its level-3 LM
server, and so on, until a LM server with location information about
the desired destination is found.

The LM1 technique is the simplest of the three, but it may consume
significant bandwidth for propagating location update messages. Technique
LM2 reduces the bandwidth consumption for reasonable rates of new session
(requiring a local page to the local location server) arrivals but at the expense
of complexity (selection and maintenance of LM servers) and an increase in
the latency for route establishment. However, the asymptotic characteristics
of the hierarchical protocol do not change whether we use approach LM1 or
approach LM2[11, 24].

Approach LM3 is the more complex to implement and analyze. It will
induce a fair amount of reactive overhead (susceptible to traffic), but will
significantly reduce the amount of overhead induced by mobility. However,
it is expected that the bandwidth consumption of approach LM3 is the
smallest of the three for typical operating conditions. The price we pay
is increased latency when building new routes, a high paging cost under
high traffic load and diversity, much higher implementation complexity, and
network susceptibility to single points of failure.

To summarize, we observe that there are a large number of variants of
hierarchical routing. Each variant represents a different trade off between
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complexity and performance. We will expect the more complex approaches
to present better performance. However, due to the unpredictable nature
of the hierarchical routing dynamics, we can not be sure of this until after
analyzing the protocol through extensive simulations. Thus, it is not clear
until after a protocol has been designed, debugged, and tested whether or
not the extra complexity has a payoff. This points out the need of theoretical
models of performance. For example, from the results shown in Table 2, we
get the insight that jumping from a 2-level hierarchy to a m-level hierarchy
(not a small jump in implementation complexity) will allow us to reduce
the protocol scalability factor with respect to network size from 1.66 to 1.5.
Whether this reduction justifies the extra complexity will be a decision that
the designer will make based on his perception of how large a network the
protocol is intended to support.

Finally, the experience of working with hierarchical routing approaches,
especially its high degree of complexity, has motivated a renovated inter-
est for alternative approaches. Thus, there has been a surge of research
for efficient flat routing algorithms whose performance (with respect to in-
crease to network size) may be competitive (under a cost-benefit analysis)
with hierarchical approaches. The next subsection presents a survey of these
techniques. Some of them, specifically HSLS, has been shown to have bet-
ter asymptotic scalability properties than some hierarchical algorithms (see
Table 2).

5.2 Flat Routing Techniques

The term “flat routing” is used to contrast basic routing techniques from
hierarchical routing applying a topology abstraction. Unlike hierarchical
routing, there are no “boundaries” imposed between groups of nodes, nor is
there an addressing scheme based on hierarchy.

In flat routing, then, there are no abstractions and no virtual nodes or
links. Each node and link in the topology table of a flat algorithm represents
an actual (physical) node or link. Thus, the topology table may grow large
as the network size increases. However, in a flat routing scheme we do not
need all the nodes and links be present in the topology table. Specifically,
some links may be hidden if they are not expected to affect a node’s route
computation. Similarly, nodes may not be included in the topology table if
they have no consequence for reaching destinations. Notwithstanding all of
the above, as the network size increases, flat routing usually requires much
more memory and processing power than its hierarchical counterparts. More
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importantly, if not carefully designed, flat routing techniques may result in
much more bandwidth consumption than hierarchical approaches.

As previously discussed, except for very specific applications, the state
of the art on microelectronics allows inexpensive memory chips inside the
network nodes. These chips provide sufficient memory space to handle even
tens of thousands of nodes. Processing power is not so inexpensive, but
efficient (incremental) algorithms still allow network with reasonable priced
processors to handle the route computation algorithms when run over a
large topology. Thus, the main challenge to network survivability as size in-
creases is the excessive bandwidth consumption. So, it is not surprising that
significant effort has been directed in reducing this bandwidth consumption.

The techniques for bandwidth consumption reduction for flat routing
can be classified into: efficient flooding, limited generation, limited dissem-
ination. These techniques can be used in isolation or in combination.

5.2.1 Efficient Flooding

Most proactive and reactive algorithms rely on flooding of control packets
to a subset of nodes in the network. However, classical flooding is a very
inefficient technique, resulting in each node receiving the same packet several
times.

Efficient flooding techniques reduce the number of times a flooded mes-
sage is retransmitted, and at a minimum, each intended recipient receives
each flooded packet at least once. For example, a technique may consist of
finding a tree in the topology such that the set of nodes in the tree covers
(i.e. is neighbor of) all the nodes in the network. An effective flooding tech-
nique may then consist of propagating the message across all the nodes in
the tree. Every node in the tree will have to transmit the message once.

Optimized Link State Routing (OLSR) [3], Topology Broadcast based on
Reverse Path Flooding (TBRPF)[4], and Core Extraction Distributed Ad
Hoc Routing (CEDAR)[37] are examples of protocols implementing efficient
flooding algorithms.

Typically, the performance improvements obtained by using efficient
flooding techniques increases with the average node degree of the network.
Thus, these techniques are especially useful for networks with high density.
However, as pointed out earlier in this chapter, high density scenarios are
better handled by means of a topology (power) control algorithm which
reduces the average node degree to an acceptable level. If topology con-
trol mechanisms are in place and the network is of the kind defined by
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assumptions a.l through a.8, then the performance improvement obtained
by efficient flooding will be a constant factor independent of the network
size, and therefore this technique will not affect the asymptotic behavior of
the protocol being run. Thus, for bounded node degree, effective flooding
techniques — while helpful — do not solve the routing protocol scalability
problem and can not be used in lieu of hierarchical routing.

5.2.2 Limited Generation

Limited generation techniques limit the amount of control information being
generated.

For example, Global State Routing (GSR)[20], and Discretized Link
State (DLS)[22] routing limit routing update generation to times which are
multiples of a base period t.. At such times, all the changes since the last up-
date are collected and sent to all other nodes in the network. This technique
is effective for high mobility.

Source-Tree Adaptive Routing (STAR)[21] limits the update generation
by only triggering updates for link state changes that affect another node’s
best route selection. Most other limited generation techniques (e.g. the one
used in OLSR[3]) reduce the amount of control information by operating on
a network subgraph formed by all the nodes and a subset of the links in such
a way that the resulting subgraph is connected. The level of performance
improvement that can be obtained with these partial-topology techniques is
not easy to analyze. However, it is expected to be above the one achieved
by efficient flooding, but below the one obtained by limited dissemination
techniques.

5.2.3 Limited Dissemination

In limited dissemination techniques, most routing information updates are
not sent to the entire network but to a smaller subset. The subset may
change over time.

For example, ZRP[17] and NSLS[22] protocols limit the event-driven link
state update propagation to their k-neighbors only.

In Fisheye State Routing[12], a node divides the set of nodes into the
in-scope and the out-of-scope subsets. A node then propagates information
about nodes in its in-scope subset with a pre-configured frequency. Infor-
mation about out-of-scope nodes is propagated with a smaller frequency.
In other words, most of the messages propagating routing information have
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been stripped of information related to the out-of-scope nodes.

The family of Fuzzy Sighted Link State (FSLS) algorithms[22] limits
the LSU generation to multiples of a base time t.. When a LSU is sent it
does not (in general) travel to the entire network. Instead, it traverses the
number of hops specified in the LSU’s packet Time To Live (TTL) field.
The value of the TTL field will depend on the current time index. Given its
potential for scalability, the family of FSLS algorithm will be described in
detail in the next subsection.

Limited dissemination techniques, by reducing the depth of propagation
of routing updates to a small fraction of the network, hold better promise
for scalability improvement for networks with a large diameter, as is the
case when the network size increases and the average node degree is kept
bounded. The challenge here is to do so in a way that does not overly
compromise route optimally.

One technique, namely HSLS[22], — a member of the FSLS family —
produces a significant change in link state asymptotic properties, reducing its
scalability factor w.r.t. network size from 2 to 1.5, rendering the algorithm
indeed scalable w.r.t. network size. Thus, remarkably, HSLS presents even
better scalability properties than hierarchical routing approaches.

5.2.4 The family of Fuzzy Sighted Link State (FSLS) algorithms

In the FSLS family of algorithms[22], the frequency of Link State Updates
(LSUs) propagated to distant nodes is reduced based on the observation
that in hop-by-hop routing, changes experienced by nodes far away tend to
have little impact in a node’s ‘local’ next hop decision.

In a highly mobile environment, under a Fuzzy Sighted Link State (FSLS)
protocol a node will transmit - provided that there is a need to - a Link State
Update (LSU) only at particular time instants that are multiples of t. sec-
onds. Thus, potentially several link changes are ‘collected’ and transmitted
every t. seconds. The Time To Live (T'TL) field of the LSU packet is set
to a value (which specifies how far the LSU will be propagated) that is a
function of the current time index as explained below. After one global LSU
transmission — LSU that travels over the entire network, i.e. TTL field set
to infinity, as for example during initialization — a node ‘wakes up’ every t.
seconds and sends a LSU with TTL set to s; if there has been a link status
change in the last ¢, seconds. Also, the node wakes up every 2 x ¢, seconds
and transmits a LSU with TTL set to s9 if there has been a link status
change in the last 2 x t, seconds. In general, a node wakes up every 2'~! x ¢,
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(i =1,2,3,...) seconds and transmits a LSU with TTL set to s; if there has
been a link status change in the last 21 % ¢, seconds.

If the value of s; is greater than the distance from this node to any other
node in the network (which will cause the LSU to reach the entire network),
the TTL field of the LSU is set to infinity (global LSU), and all the counters
and timers are reset. In addition, as a soft state protection on low mobility
environments, a periodic timer may be set to ensure that a global LSU is
transmitted at least each ¢, seconds. The latter timer has effect in low
mobility scenarios only, since in high mobility ones, global LSUs are going
to be transmitted with high probability.

Figure 6 shows an example of FSLS’s LSU generation process when mo-
bility is high and consequently LSUs are always generated every t. seconds.
Note that the sequence si, sa,... is non-decreasing. For example consider
what happens at time 4t. (see figure 6). This time is a multiple of ¢, (associ-
ated with s1), also a multiple of 2¢, (associated with s) and 4t. (associated
with s3). Note that if there has been a link status change in the past t. or
2t seconds, then this implies that there has been a link change in the past
4t. seconds. Thus, if we have to set the TTL field to at least s1 (or s2) we
also have to increase it to s3. Similarly, if there has not been a link status
change in the past 4t. seconds, then there has not been a link change in the
past t. or 2t. seconds. Thus, if we do not send a LSU with TTL set to s,
we do not send a LSU at all. Thus, at time 4¢t. (as well at times 12¢., 20t,
any other time 4 x k x t, where k is an odd number) the link state change
activity during the past 4t¢. seconds needs to be checked and, if there is any,
then an LSU with TTL set to s3 will be sent. Thus, in the highly mobile
scenario assumed on figure 6, a LSU with TTL equal to s3 is sent at times
4t, and 12t..

The above approach guarantees that nodes that are s; hops away from
a tagged node will learn about a link status change at most after 2¢~'¢,
seconds. Thus, the maximum ‘refresh’ time (7'(r)) as a function of distance
(r) is as shown in Figure 7. The function 7'(r) will determine the latency in
the link state information, and therefore will determine the performance of
the network under a FSLS algorithm.

Different approaches may be implemented by considering different {s;}
sequences. Of particular interest are Discretized Link State (DLS), Near
Sighted Link State (NSLS), and Hazy Sighted Link State, discussed next.

DLS is obtained by setting s; = oo for all i (see Figure 8 left). DLS
is similar to the Standard Link State (SLS) algorithm and differs only in
that under DLS a LSU is not sent immediately after a link status change is

48



L= U

A "

1]

k =

_ LSU sent. =

T * TTL field set to ‘k’ N

Sa
S3 Ss
S S2 S2 S2
Sl Sl T Sl Sl Sl Sl T Sl Sl

< A A A A A A A A .

0 te 2te 3te 4te 5te 6te 7te 8te 9te 10te 11te 12te 13te 14te 15te 16te

time

Figure 6: Example of FSLS’s LSU generation process

detected but only when the current t. interval is completed. Thus, several
link status changes may be collected in one LSU. DLS is a modification of
SLS that attempts to scale better with respect to mobility.

NSLS is obtained by setting s; = k for ¢ < p and s, = oo (for some p
integer), as shown in Figure 8 (right). In NSLS, a node receives information
about changes in link status from nodes that are less than ‘k’ hops away (i.e.
inside its sight area), but it is not refreshed with new link state updates from
nodes out-of-sight. NSLS has similarities with ZRP, DREAM, and FSR.

Suppose that initially, a node has knowledge of routes to every destina-
tion. In NSLS, as time evolves and nodes move, the referred node will learn
that the previously computed routes will fail due to links going down. How-
ever, the node will not learn of new routes becoming available because the
out-of-sight information is not being updated. This problem is not unique
to NSLS but it is common to every algorithm in the FSLS family. NSLS,
however, represents its worst case scenario. To solve this problem, NSLS
(and any algorithm in the FSLS family) uses the ‘memory’ of past links to
forward packets in the direction it ‘saw’ the destination for the last time.
As the packet gets to a node that is on the ‘sight’ of the destination, this
node will know how to forward the packet to the destination. The above is
achieved by building routes beginning from the destination and going back-
wards until getting to the source; without removing old entries that although
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Figure 7: Maximum refresh time T'(r) as a function of distance from link
event.

inaccurate, allows tracing the destination. NSLS has similarities with ZRP,
DREAM, and FSR.

Finally, the family of Fuzzy Sighted Link State algorithms is based on
the observation that nodes that are far away do not need to have complete
topological information in order to make a good next hop decision, thus
propagating every link status change over the network may not be neces-
sary. The sequence {s;} must be chosen as to minimize the total overhead
(as defined in the previous section). The total overhead is greatly influenced
by the traffic pattern and intensity. However, the choice of {s;} is solely
determined by the traffic locality conditions. Based on the uniform traffic
distribution (assumptions a.l - a.8) among all the nodes in the network, the
best values of {s;} were found (see [22]) to be equal to {s;} = {2'}. FSLS
with {s; = 2'} is called the Hazy Sighted Link State (HSLS) algorithm[22].
Figure 2 shows an example of HSLS’s LSU generation process. HSLS in-
duces an almost linear relationship between route information latency and
the distance in hops. This in turn causes the uncertainty in the relative
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Figure 8: DLS’s (left) and NSLS’s (right) LSU generation process.

angular position of the distant node to be roughly constant independent of
the distance. Since in hop-by-hop routing a node is only concerned with the
next hop decision, and the probability of making a wrong decision depends
mainly in the angular uncertainty, which was roughly constant independent
of the distance, we end up with a probability of making a bad next hop
decision to be also roughly constant independent of the distance. Out of
all possible assignments of probability of error versus distance, it turns out
that the best performance is obtained when all the values are balanced.
That is, the probability of error is roughly constant independent of the dis-
tance. Thus, HSLS’s dissemination results in a linear relationship between
latency and distance represent the optimal balance between proactive and
sub-optimal routing overhead. If the latency versus distance curve grows
faster than linear, too many mistakes are made when forwarding packets
to nodes far away. If the curve grows slower than linear, we make fewer
mistakes when finding routes for nodes far away than when finding routes
to nodes close by, but the proactive overhead increases a fair amount since
global LSUs would be sent more frequently (to reduce the latency in routing
information for nodes far away).

5.3 Comparing HierLLS and HSLS

The theoretical results in Table 2 shows that both HierLLS and HSLS present
good scalability with respect to network size. This result may be explained
by the fact that both protocols induce a multi-level information dissemina-
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tion technique. HSLS outperforms HierLS since HSLS’s routes’ quality does
not degrade with network size. HSLS’s angular displacement uncertainty
is mainly dependent on the nodes speed and the timer period t., which is
optimally set based on the mobility and traffic rates (regardless of network
size). HierLS’s routes’s quality suffer small degradation each time the num-
ber of hierarchical levels is increased. Moreover, HSLS is able to improve
the quality of its routes as a response to an increase in traffic load. HierLS’s
route quality, on the other hand, is dependent on the number of hierarchical
levels, which depend on the cluster size, a parameter that is independent of
the traffic load, leaving HierLS powerless to react to an increase in traffic
load. Thus, HSLS present better scalability properties than HierLS.

However, the constants involved in the asymptotic expression may be too
large, preventing HSLS from outperforming HierLS under real life scenarios.
Therefore, HierLLS and HSLS were compared through simulation.

Table 3 shows the simulation results obtained by OPNET for a 400-node
network where nodes are randomly located on a square of area equal to 320
square miles (i.e. density is 1.25 nodes per square mile). Each node chooses
a random direction among 4 possible values, and moves in that direction at
28.8 mph. Upon reaching the area boundaries, a node bounces back. The
radio link capacity was 1.676 Mbps. Simulations were run for 350 seconds,
leaving the first 50 seconds for protocol initialization, and transmitting pack-
ets (60 8kbps streams) for the remaining 300 seconds. The HierLS approach
simulated was the DAWN project [38] modification of the MMWN clustering
protocol [15]. Following the taxonomy presented in this paper, this protocol
can be classified as a m-level hierarchy® with a cluster radius greater than
one. The node affiliation decisions were performed by the cluster leaders
with the goal of balancing cluster sizes with a lower and upper bound on
the cluster sizes of 9 and 35. The cluster leader selection criteria was to
choose the node in the cluster with the largest number of (unassigned) k-
hop neighbors. The virtual gateway method of topology abstraction was
used.

The metric of interest is the throughput (i.e. fraction of packets success-
fully delivered). Table 3 shows the throughput obtained under two different
MAC protocols: unreliable and reliable CSMA. For reliable CSMA, packets
were retransmitted up to 10 times if a MAC-level ACK was not received
in a reasonable time. We can see that in both cases HSLS outperforms

8 Although m-level can be formed, since the network size was relatively small, only 2
levels were formed during the simulations.
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| Protocol UNRELIABLE | RELIABLE ||

HSLS 0.2454 0.7991
HierLS-LM1 0.0668 0.3445

Table 3: Throughput of a 400-node network.

HierLS, although the relative difference is reduced under the reliable MAC
case. This can be explained considering that the high rate of collisions expe-
rienced under unreliable CSMA favored shorter paths. For nodes close by,
HSLS may provide almost optimal routes while HierLLS routes may be far
from optimal if the destination belongs to a neighboring cluster. Thus, we
can see that an unreliable MAC biases performance towards HSLS. Another
factor to take into account is the latency to detect link up/downs. Under
HierLS this information is synchronized among all the nodes in the cluster
and therefore some latency is enforced to avoid link flapping. In HSLS, on
the other hand, each node may have its own view of the network, and as
a consequence a node may be more aggressive in temporarily taking links
down without informing other nodes. As a consequence, HSLS is more ag-
gressive and reacts much faster to link degradation, using alternate paths if
available.

The simulation results presented do not represent a comprehensive study
of the relative performance of HierLS versus HSLS under all possible scenar-
ios. They just present an example of a real-life situation to complement the
theoretical analysis. The theoretical analysis focuses on asymptotically large
networks, heavy traffic load, and saturation conditions where the remaining
capacity determines the protocol performance. The simulation results, on
the other hand, refer to medium size networks with moderate loads, where
depending on the MAC employed, other factors such as the quality of the
links that neighbor discovery declares up, the latency on detecting link fail-
ures, etc., may have more weight over the protocols’ performance.

Thus, whether HSLS or HierLLS should be preferred for a particular sce-
nario, depends on the particular constraints. For example, if memory or
processing time is an issue, HierLS may be preferred since it requires a
smaller topology table to be stored/processed. On the other hand, if imple-
mentation complexity is an issue, then HSLS should be preferred.
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5.4 Discussion

Traditionally, as network size increases it was believed that the best al-
ternative for routing scalability was the inclusion of hierarchical routing
techniques. Several such techniques were designed, as for example the work
done under DARPA’s SURAN project (see [39, 40] for a survey).

Hierarchical routing solutions, however, quickly showed their drawbacks.
For one, their implementations proved too complex, having to handle too
many exception situations, especially in scenarios —as in the military — where
nodes chosen for special functions (e.g. cluster leaders, location management
servers, etc.) are susceptible to attack/destruction. In these scenarios, the
routing protocol has to specify mechanisms for backup selection and ac-
tivation. Another drawback is that the overhead induced for maintaining
the hierarchy and for keeping up-to-date location management information
reduces the bandwidth savings achieved due to reduction of link state infor-
mation dissemination. These drawbacks have played a large part in the fact
that in practice no multilevel hierarchical protocols has been implemented in
real life networks. All current hierarchical routing implementations limit its
number of hierarchical levels to 2, which in turn puts a limit to its scalability.

The difficulty in the implementation of hierarchical routing motivated
the search of alternative, simpler techniques to improve routing protocol
scalability with respect to network size, including but not limited to effi-
cient flooding, limited generation, limited dissemination, and a combination
thereof. This section presented a comparison of these new techniques against
the classical hierarchical routing approach.

The theoretical analysis showed that there is no fundamental advan-
tage provided by hierarchical routing over an efficient combination of these
techniques, as for example, the HSLS algorithm. Indeed, HSLS scalability
properties with respect to network size are not worse than that achieved by
hierarchical routing. Furthermore, HSLS presented better scalability prop-
erties with respect to traffic rate.

The experimental study also pointed out that hierarchical routing im-
plementations, while extremely more complex than HSLS’s implementation,
are not guaranteed to achieve better performance than HSLS. The relative
performance of the protocols depends on other factors, such as the link
layer latency on detecting link failures, or the MAC layer susceptibility to
collisions between control and data packets.

Thus, we conclude that limited dissemination techniques are good can-
didates for achieving scalable routing protocols. Regarding which protocol
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should be preferred in a practical situation, we realize that this determi-
nation depends on several factors. We may say that when network size,
mobility, and traffic increases; an efficient MAC is used; or implementation
complexity is one of the main concerns; limited dissemination techniques as
HSLS should tend to be preferred over hierarchical approaches.

But, in scenarios unfavorable to limited dissemination techniques such
as HSLS, hierarchical approaches should tend to be preferred. Scenarios
unfavorable to HSLS include scenarios where storage capacity at each node
is limited, the topology is sparse, or there is a large amount of hostile mis-
behaving nodes. It was already noted that HSLS requires more storage
space than hierarchical approaches. Sparse, tree-like topologies present a
challenge to HSLS, since link status changes of links on shortest paths will
have an effect on routing decisions taken by nodes several hopes away from
the node experiencing the link status change. Roughly speaking, instead
of ‘locally repairing’ the broken route, the network will have to back the
old route up until reaching a node (maybe even the source) from where a
new route segment to the destination node may be built. Since HSLS link
state dissemination to nodes more than 2 hops away is not immediate but a
latency is induced, this may result in temporary routing loops. The impact
of these routing loops (other than rendering the destination unreachable) on
the network performance depends on the loop detection/removal capabilities
available on the network. Additionally, since in SLS a node receives 2 LSUs
each time there is a link status change (one from each node at each extreme
of the link) a node can validate routing information sent by misbehaving
nodes. In HSLS - depending on the distance to the node experiencing a
link status change — only one LSU may be received, making the problem of
detecting mishehaving nodes more difficult.

Finally, the reader should keep in mind that hierarchical routing’s rela-
tive performance (against limited dissemination techniques) may increase in
scenarios different to the homogeneous network considered in this chapter
(defined by assumptions a.1-a.8). For example if the network is formed by
some low power terrestrial nodes and some high power/aerial nodes with
much better coverage. Or if the network is formed by nodes whose move-
ments are not uncorrelated but follow well defined group patterns. In these
cases, a desirable property of the hierarchical routing technique would be to
be able to extract the underlying network structure and mimic it in its cluster
formation process. If successful, the clustering mechanism will significantly
reduce the bandwidth consumed by the location management procedure,
resulting in improved scalability with respect to the results shown in Ta-
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ble 2, where assumptions a.l through a.8 were valid. These scenarios may
provide hierarchical routing approaches an edge above limited dissemination
flat techniques that do not try to exploit the underlying network structure.

6 Conclusions and Future Research Directions

This chapter addressed the issue of the scalability of routing protocol for
bandwidth-constrained ad hoc networks from a fundamental viewpoint. It
presented concepts, metrics, and methodologies for the study of routing pro-
tocols. Analytical results for the scalability of a representative set of routing
protocols were discussed, providing a deeper understanding of the charac-
teristics and tradeoffs associated with various classes of routing protocols for
mobile networks. This treatment of the subject is not all-inclusive. Several
(valid) assumptions about the networking scenario were adopted in order
to achieve closed form expressions. We hope, however, to have succeeded
in providing the reader with the necessary tools for performing his/her own
analysis and performance assessment under the particular networking sce-
nario he/she is interested in.

In particular, as a consequence of the fundamental analysis two common
misconceptions were exposed:

e Misconception 1: As traffic load increases, the bandwidth allocated
to routing information dissemination should decrease.

e Misconception 2: As network size increases the best option is to
engage a hierarchical routing algorithm.

The analysis also pointed out the best performing approaches in the
context of scalability with respect to network size: limited dissemination flat
routing, and m-level hierarchical routing. Thus, a more in depth analysis of
these ‘winner’ approaches were presented.

The treatment of hierarchical routing approaches showed that they are
not only extremely complex to implement but they are also hard to analyze,
to the point of not being clear if the performance improvement to be achieved
with a particular hierarchical routing approach would justify the implemen-
tation headache. This disappointment with hierarchical routing complexity
has motivated a surge of interest in the study of scalable non-hierarchical
protocols.

We presented the main techniques to improve scalability for flat routing.
We compare the (probably) best of this techniques against an average hier-
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archical routing technique and the result was that the flat routing scheime,
while much easier to implement, outperforms the hierarchical approach un-
der the high stress (asymptotic) regime and also under the moderate stress
scenario.

In conclusion, it seems that imposing an arbitrary hierarchy in homoge-
neous ad hoc networks provides no scalability advantage (over flat-routing
scalability-improving techniques). It seems that hierarchical routing would
justify its high implementation complexity only if the hierarchy built was a
response/reflection of an underlying hierarchy /structure in the network.

Future research should extend the results shown in Section 4 for scenarios
different to the ones defined by assumptions a.1-a.8. Of particular interest
are the group mobility scenarios, since it appears that they are likely to be
present due to patterns on human motion following streets, highways, etc.,
and the task requirements of automated systems (robots, etc.). For these
scenarios the theory can be easily extended, and should be used to help in
the design of structure-learning gain functions for cluster formation, like the
one developed in SOAP[24].

This chapter has addressed the scalability challenge from a bandwidth
point of view. As ad hoc networks used become widespread, different ap-
plications will need to be supported. A particular challenge is posed by
QoS demanding applications, where the question is not to get the best route
to a destination but whether a particular QoS constraint can be satisfied
(Call Admission Control) by the network and how. Call Admission Control
(CAC) usually requires more information than say, minimum hop routing.
Moreover, the impact of routing information latency or imprecision into sys-
tem performance is not easy to evaluate. Defining a metric that captures the
effect of routing protocols (control overhead, route information latency, etc.)
in QoS related performance (as Total Overhead does for bandwidth related
performance) is not an easy task. However, this task is paramount for the
proper design of routing protocols enabling large ad hoc network running
application with demanding QoS constraints such as voice and videoconfer-
encing. Support of such applications may well be the rite of passage required
for ad hoc networking technology in order to reach the mass market, and as
such it may define the future of this technology.
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