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Abstract—Over the past decade, the theoretical or asymp-
totic scalability of Mobile Ad Hoc Networks (MANETs) has
been extensively studied. However, the implication of these
asymptotic results on finite, brigade-sized networks with real-
life assumptions is not well-understood.

We present a two-pronged study on the scalability of military
networks with assumptions and goals pertinent to such net-
works: 1) we investigate the traffic distribution characteristics
in a typical military network and show that it follows a
power law which exhibits very good scaling properties; 2) we
introduce the notion of “in practice” scalability and derive an
expression for the in-practice scalability of a simple example
network. Our study indicates that MANETs may well be
adequately scalable in practice even if they are asymptotically
unscalable, and that military MANETs may also even be
asymptotically scalable by virtue of their traffic characteristics.

I. INTRODUCTION

Mobile Ad Hoc Networks (MANETs) have been of sig-
nificant interest to the military for several decades [1], [6],
[9]. More recently, significant investment has been made
in several waveforms for the Joint Tactical Radio System
(JTRS), most of which are based on the MANET architec-
ture. Further, with decreasing hardware cost and increas-
ing communication capacity, the military envisions large
MANETs consisting of several thousands or more nodes
(an example is the Defense Advanced Research Projects
Agency (DARPA) Wireless Network after Next (WNAN) [8]
system). The scientific and engineering community around
these emerging MANETs clearly believes in their viability.

At the same time, information-theoretic results within the
last decade appear to show that MANETs are inherently
unscalable. In particular, a seminal paper by Gupta and
Kumar [4] – hereinafter referred to as the GK result/paper
– shows that the per-node transport capacity of an arbitrary
MANET is Θ(1/

√
n), where n is the number of nodes in the

MANET. In other words, the information carrying capacity
becomes vanishingly small with increasing n. This result
appears to be in tension with the efforts to build large-scale
MANETs – are MANETs scalable or not?

In this paper, we present the first thorough examination
of this dichotomy on MANET scalability. A key observation
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is that there are two interpretations of “scalability” – we
call them asymptotic scalability and in-practice scalability.
Asymptotic scalability, under which most of the work along
the lines of [4] lies, refers to the order of growth in the limit
of some metric (usually capacity) as a function of size. In
contrast, we define in-practice scalability as the number of
nodes (or other parameter) beyond which a network will not
work “adequately” (later in this paper, we shall develop a
formal definition of “adequately”). Unlike asymptotic scala-
bility, which is typically unqualified (e.g. “Network X does
not scale”), in-practice scalability is qualified (“Network X
with parameter set P scales to 1000 nodes”).

The well-known GK asymptotic scalability result is based
on certain assumptions about the underlying network sce-
nario. We examine these assumptions, survey and discuss
work that shows the impact of relaxing some of these
assumptions. In particular, we look in detail at the traffic
distribution of a military MANET. Using data from the
Future Combat System (FCS) network documentation1, we
analyze the approximate distribution of traffic with respect
to the number of hops. We show that the traffic distribution
is fairly localized, and appears to follow a power law
distribution with an exponent between 2 and 3. This is
significant because it has been shown [10] that a MANET
with power-law distributed traffic with exponent greater than
2 scales as Θ(1), that is, it is asymptotically scalable.

We then consider general MANETs, with assumptions
(including traffic) similar to the GK paper. Although by
the GK result such MANETs are asymptotically unscalable,
the number of nodes to which a particular instantiation can
scale “in practice” is not clear. We present a definition
of in-practice scalability based on the concept of residual
node capacity and derive an expression for the in-practice
scalability of a line network (e.g. a convoy). A realistic
instantiation of the radio and network parameters along with
an all-informed multicast voice traffic model - which is the
most aggressive traffic distribution possible – shows that it
can scale to over 5000 nodes even though asymptotically
it is regarded “unscalable”. While a convoy is only one
kind of topology, this illustrates how a network can at once
be asymptotically unscalable and be adequately scalable in

1While FCS is no longer a program of record, the studies done for FCS
are still representative of military doctrine and relevant to our study.

The 2010 Military Communications Conference - Unclassified Program - Networking Protocols and Performance Track

978-1-4244-8180-4/10/$26.00 ©2010 IEEE 493



practice. The in-practice scalability of a network depends on
data rates, antennas and other factors that are being enhanced
continually by new technology, promising a bright future for
MANET scalability.

II. ASYMPTOTIC SCALABILITY: A BRIEF OVERVIEW

In this section, we survey and interpret information-
theoretic results on asymptotic scalability and provide the
background for our contributions in later sections.

Asymptotic analyses deal with behavior “in the limit”, or
the “order” of growth of a quantity. The notation of O(n),
Ω(n) and Θ(n) indicate the upper, lower and “upper and
lower” bounds on order of growth respectively. For example,
if f(n) = a · n2 + b · n+ c, then f(n) is O(n2) and Θ(n2)
– note that lower order terms and constants are ignored in
asymptotic analysis.

We begin with the seminal Gupta Kumar result [4]. They
considered the transport capacity, that is, the sum of prod-
ucts of bits and the distance they are carried over per unit
time, of a MANET in a given area as the number of nodes is
increased. They consider two kinds of networks – random,
in which nodes are placed with a uniform probability in
the plane; and arbitrary, in which one is allowed to place
nodes anywhere. They consider two interference models
– the protocol model in which interference depends on
the distance, and the physical model which is based on
pathloss-based Signal-to-Noise Ratio (SNR) at a receiver.
Their results for the four combinations are shown in the
table below.

Transport capacity results from [4]
Protocol Model Physical Model

Arbitrary Nets Θ( 1√
n

) Θ( 1
n1/α )

Random Nets Θ( 1√
n·log(n) ) Θ( 1√

n
)

The most well-known of these results, namely the one for
arbitrary networks using a protocol model, states that the
per-node capacity falls off as 1/

√
n as n increases. To see

this informally and intuitively, consider an equivalent and
likely more realistic “expanding area” model (we assume
a circle), where the density remains constant as the nodes
increase2. Since nodes at some threshold distance apart can
transmit simultaneously without causing interference, the
one-hop capacity increases as Θ(n). However, the average
number of hops is roughly proportional to the diameter of
the circle, which increases as

√
n (since π · (D2 )2 ∼= n).

Thus, the total network capacity is Θ(n/
√
n) = Θ(

√
n),

which implies the per-node capacity is Θ(1/
√
n).

We note that these results are agnostic to routing, Media
Access Control (MAC) or any other control protocols. That
is, no matter what protocols are used, these results hold.
Further, increasing the bandwidth or adding more frequen-
cies does not change the scalability [4].

2Gupta and Kumar show that the capacity is maximized when nodes
transmit at the smallest power that keep them connected, which makes this
model equivalent
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Fig. 1. Summary of scalability results some of the GK assumptions are
relaxed. Refer to the text for citations containing the results.

The GK results are based on a number of assumptions:
omni-directional antennas, stationary networks, no coop-
eration amongst the nodes, and uniformly random traffic
patterns, single packet reception, to name a few. Post-GK
research has looked at the scalability of MANETs under a
relaxation of those assumptions. The results are summarized
in Figure 1.

A randomly mobile network, interestingly, is asymptoti-
cally scalable [3]. Intuitively, this is because, given sufficient
time, the destination node will come within a small number
of hops of the source. However, this result does not bound
the delay which may be excessively large in practice.
Directional antennas only increase the constant [14], and
as mentioned earlier, asymptotic results do not change with
constants. However, constants do matter in practice – we
revisit this in section IV. Use of sophisticated physical
layer techniques – distributed MIMO [11], Multi-Packet
Reception (MPR) [2], etc. change the effect of interference
and have been shown to asymptotically scale. Finally, it has
been shown that if the traffic is non-uniform, in particular if
it follows a “power law”, then the network may scale. We
investigate this in the next section.

III. SCALABILITY WITH MILITARY TRAFFIC

In this section, we examine the nature of military traffic,
and its distribution as a function of the number of hops.
In particular, we have taken the Future Combat System
(FCS) Brigade Combat Team organization and doctrine, and
traffic studies developed by the Capability Development and
Integration Directorate-Gordon (CDID-G) and, using some
reasonable assumptions, estimated the fraction of traffic as
a function of the hop-distance of the traffic. As most FCS
documentation is FOUO (For Official Use Only), we shall
only present abstracted information in this paper.

A. Methodology

The CDID-G traffic model groups traffic by echelons,
namely, fire team, squad, platoon, company, battalion and
brigade. Thus, we are given what a team transmits to
a squad, what a squad transmits to a platoon, what a
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platoon transmits to a company, etc. The number and type
of messages, frequency of transmission, and specific “To”
and “From” addresses are aggregated into a bandwidth
requirement for traffic between each echelon and every other
echelon in the brigade. The advantage of this model over
other typical models such as force-on-force and scripted
models is that it is not tied to any specific situation or, in the
case of force-on-force simulations, the skill level of players.
It is the combination of the results of many such simulations
and therefore generic enough for our study.

Mapping the traffic distribution within and between ech-
elons to the number of hops depends on three factors: the
nominal spacing of elements within an echelon, nominal
spacing of elements between echelons, and the radio range
to connect elements.

To determine a realistic hop count, the differences in the
ranges of the radios found in each echelon must be taken
into account. For example, a radio found in a rifle squad
does not have the same range as a radio found on a battalion
command and control vehicle. We chose two nominal ranges
to represent the 12 types of terrestrial radios currently found
in a BCT – 1 kilometer for platoon and below radios, and
10 kilometers for company and above radios.

We assumed that traffic generated at the lower echelons
(i.e., team) traveling to the higher echelons (i.e., brigade)
would use the lower range initially and then progress to
the higher radio range as the message passed through the
company to the battalion. We also assumed that airborne or
satellite links were not used.

Depending on how the brigade elements were deployed,
we identified two equally realistic scenarios, which result
in somewhat different distributions and are interesting to
contrast in this paper.
• Consolidated. In this it was assumed that the brigade

command elements are concentrated at one place.
• Evenly distributed. In this it was assumed that the

brigade fields three tactical operations centers (Main,
Forward, Rear) and brigade traffic is dispersed between
them.

B. Traffic Distribution and Analysis

The Consolidated (CD) and Evenly Distributed (ED)
traffic percentages for each hop are shown in Figure 2. It is
clearly evident that there is a concentration around the lower
numbers of hops. While it is obviously not uniform, it does
not appear to be steep enough to be exponential. We are
therefore led to consider a power law distribution which
is not as steep as exponential, and may have theoretical
connections with hierarchies [7]. In what follows, we first
describe the power law, and then discuss the data in Figure
2 vis-a-vis the power law.

Informally, an event is said to be power-law distributed if
the probablity of the event having a value x is proportional to
x−α, where α is the power law exponent that captures how
quickly the probability falls off – the higher the power law

!"#$%&'()*+,)-.+#/'01#$2,)3'43$*3%)/2+#/'01#$2,)3'

Fig. 2. Aggregated traffic distribution as a function of number of hops,
for FCS BCT. No traffic went 6 hops.

exponent, the quicker the probability falls off with increasing
x [13]. Many natural pheonomena such as earthquakes,
wealth distribution, population of cities, etc. have been
shown to follow a power law.

Let h denote the number of hops (first column in the
figures) and P (h) the probability that traffic goes h hops
(second column divided by 100). By definition,

P (h) = C · h−α (1)

where C is some constant.
Since the sum of probabilities must equal 1, we have

7∑
h=1

(Cα · h−α) = 1 (2)

Clearly, the constant will depend on α. To proceed
further, we need to determine approximately what α we are
interested in. As we shall see later, α = 2 appears to be a
thresholding point in terms of scalability [10]. Therefore,
we consider α = 2 and α = 3. Expanding and solving
for Cα, for α = 2 and 3, we get C2 = 0.66, and C3

= 0.83. Plugging these back in equation 2 we get “true”
power law distributions (that is, the distribution if a 7 hop
network followed power law precisely) for exponent 2 and 3
respectively as P2(h) = 0.66 · h−2 and P3(h) = 0.83 · h−3.

We plot the actual probabilities for each hop and compare
with the probabilities based on “true” power law distri-
butions with exponent 2 and exponent 3. The way to do
this is to take the cumulative distribution function and plot
it on a log-log (doubly log) scale [13]. That is, we plot
PC(h) = log(P (H > h)) versus log(h). Figure 3 shows the
Consolidated scenario along with cumulative counterparts of
PC2 and PC3 . Figure 4 shows the Evenly Distributed Scenario
along with the cumulative PC2 and PC3 .

C. Implications on asymptotic scalability

The GK results assume that traffic is uniformly distributed
in terms of hop distance. The analysis for the FCS BCT done
above shows clearly that this is far from true, and that there
is a heavy localization. The level of localization depends
upon the scenario, but even in the ED scenario, there is only
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Fig. 3. Comparison of CD scenario with power law distributions of
exponent 2 (upper dashed) and 3 (lower dashed). Cumulative probabilities
plotted on doubly log scale.
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Fig. 4. Comparison of ED scenario with power law distributions of
exponent 2 (upper dashed) and 3 (lower dashed). Cumulative probabilities
plotted on doubly log scale.

a small fraction of traffic at larger hops. Thus, GK results
do not seem to apply to military traffic scenarios.

Our analysis of the distribution vis-a-vis the power law
distribution, shows up some clear relationships. The CD
scenario seems to fit fairly well with a power law distribution
with an exponent somewhere between 2 and 3. The ED
scenario is less of a fit, but we note that after 3 hops, it
is sandwiched between PC2 and PC3 . As per a more precise
definition of power law, it is sufficient that there exist a h′

above which the distribution is a power law [13].
As mentioned earlier, theoretical results on scaling law

with power law distributed traffic is different from that for
uniform traffic. In [10] it is shown that the scaling has
four distinct regimes depending on the power law exponent.
Specifically, if α < 1, then the per node capacity scales
as O(1/

√
n), which is identical to GK result for uniform

traffic; if α = 1, then it is O(ln(n)/
√
n) and if 1 < α < 2,

it is O(n
(α−2)

2 ), and when α = 2 it is O(1/ln(n)). These
are better scaling properties than with uniform, but still
unscalable in the asymptotic sense; but if α > 2 then
[10] shows that the capacity scales as O(1), that is, it is
asymptotically scalable.

This last result is very promising in light of our observa-

Fig. 5. C/
√
n for C=10 (lower) and C=1000 (higher) for brigade sized

networks. Asymptotically, they are the same, but it is clear that in practice
C=1000 is significantly better.

tions – the exponent need not be very high, just greater than
2 (even marginally) for asymptotic scalability. The FCS BCT
traffic does seem to have this property, and is an encouraging
sign. However, our analysis was based on a single set of data
and the number of hops is limited. Therefore, we cannot
at this point definitively conclude that all military traffic is
power law with exponent greater than 2, without analysis of
more data sets. Nonetheless, it is clear that at the very least
GK results need to be revisited for military networks; and
there is some evidence that military traffic might well result
in asymptotically scalable networks.

IV. IN PRACTICE SCALABILITY

The previous section showed that the FCS BCT and
other such echelon-based networks are likely to have power-
law-distributed traffic with exponent greater than 2, which
by [10] makes them scale asymptotically. However, non-
military MANETs and military MANETs with traffic distri-
bution unlike the ones analyzed above may not have power-
law-distributed traffic, or the exponent may be less than 2.
In this section, we discuss the number of nodes to which
general MANETs - regardless of the traffic distribution –
can scale to. A network may be asymptotically unscalable,
yet scale to several thousands or tens of thousands of nodes
in practice, depending on the constants in the expressions.

To see the impact of constants, consider two networks
with per-node capacity O(1/

√
n). In one the constant is 10,

and the other is say 1000. Figure 5 shows how these curves
look on brigade-sized networks. Clearly, for the military
network practitioner, the network with a constant of 1000
is significantly better (e.g. at 3000 nodes, it gives a 20x
improvement in capacity). Thus, even though these networks
have the same asymptotic scalability (the curves meet up at
some very large node number), it is obvious that for the
purposes of fielding military MANETs, there is a major
difference which would have been missed had we only
looked at asymptotic scalability.
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As another example, consider the use of directional an-
tennas in MANETs, [12] which effectively increases the
constant. It has been shown [14] that a random MANET
with transmit and receive beamwidth of β increases the
capacity by 4π2/β. Consider a random MANET that scales
to 100 nodes with omni-directional antennas. A 30 degree
beamwidth would make it scale to 14,400 nodes, which is
entirely acceptable in practice. At the same time, per asymp-
totic scalability definition, this is an unscalable network.

In general, asymptotic analysis is not suitable for an-
swering several questions that are of practical interest: how
many nodes does a given network scale to, what is the
effect of different topology classes, traffic and physical layer
parameters, which parameters most affect my network’s
performance, etc. While there are specific studies [5], and
Gupta-Kumar [4] do work out the actual expressions with
constants enroute to the asymptotic results, there is no defini-
tion and framework for studying such in-practice scalability
in general. In the remainder of this section, we introduce a
simple definition of in-practice scalability and apply it to a
line network (e.g. convoy).

We begin with a few definitions. Consider a node m in
the MANET. The available capacity A (m) indicates the
amount of data that can be handled by m. The used capacity
U (m) denotes the amount of data load at m in transporting
a required set of flows. The blocked capacity B (m) denotes
the capacity that is unusable by node (for example, due to
contention or energy considerations). The residual capacity
R (m) is the difference A (m) - U (m) - B (m).

The scalability of a network depends fundamentally on
the balance between available and used resources. Clearly,
the network can support the offered flows if and only if the
residual capacity at every node in the network is positive.
We assume that all nodes are loaded equally on average, for
instance, by the use of a load-balancing routing protocol.
Heterogeneous loading can be considered by identifying the
most congested node and computing its used capacity, but
this is beyond the scope of this paper.

Thus, it suffices to take any sample node and determine
if its residual capacity is positive. Thus, we drop the m in
the paranthesis for the remainder of this discussion.

Both U and B may have multiple components. For ex-
ample, U typically consists of traffic load, routing control
overhead, MAC overhead, etc. Channel contention is a
key component of B . Denoting the jth component with a
subscript j, we have

R = A −
∑
j

Uj −
∑
j

Bj (3)

Now, for each component j, assuming node homogeneity,
the contention-based blocking is a result of a certain number
of nodes wanting to do the same thing as the considered
node. Thus,

Bj = γj · Uj (4)

Then,

R = A −
∑
j

(1 + γj) · Uj (5)

We call γj the contention factor. In wireless networks, the
contention factor depends upon how many nodes are in the
neighborhood of a node, and on the medium access control
protocol.

We consider a system to be able to work adequately if and
only if every single node in the system is able to withstand
the load on average, that is residual capacity is positive. This
brings us to the definition of in-practice scalability.

Definition IV.1. The in-practice scalability of a network is
the number of nodes X such that for all n ≤ X , R> 0, and
for all n > X , R≤ 0

As an application of the above, consider a line network,
representing, for instance, a convoy of vehicles. Suppose the
network has N nodes, is topologically stationary (the convoy
may move but the links between nodes aren’t broken), each
node has X transceivers each with a rate r, and packet error
probability is e. Suppose each node originates a flow of L
bps at duty cycle d that is multicast3 to an “all-informed”
group, that is, to all nodes in the network. We assume that
the network uses a link state routing protocol with overhead
of Q bps orignated per node. We ignore the medium access
control overhead (typically, this does not increase with size
as long as the density is about the same).

By the GK result, the above network is asymptotically
unscalable since it is an “arbitrary” network and meets the
assumptions made in the analysis, including the uniform
traffic assumption. What is the in-practice scalability of this
network? We give an approximate analysis of this below.

Using equation 5, we have, for a typical node,

• A = r · X . We assume that the X transceivers are
assigned X orthogonal frequencies and hence the ca-
pacity is essentially multiplied by X (one can do better
than this if more than X frequencies are available, but
we take a conservative view).

• For the traffic flow (F) component, UF = L·(N−1)+L
= L ·N since every node needs to forward L bps from
every other node and from itself. Further, γF = 2 since
the receiver and its neighboring node must defer.

• For the control overhead (O) component, since link
state floods, UO = N ·Q, and since Link State Updates
(LSUs) are broadcast, γO = 4 since for each of the
sender’s two neighbors, they as well as their neighbors
must defer so that both neighbors get the LSU.

Each packet constituting L is subject to an error proba-
bility of e and needs to be retried. The expected number of
transmissions is therefore 1/(1− e).

3We use multicast rather than unicast for two reasons: first, military
traffic is overwhelmingly multicast; second, it represents a more aggressive
demand than unicast and represents a worse case.
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Further, the effective load is L multiplied by the duty
cycle. Substituting in equation 5.

R = r ·X − (1 + 2) · ( L · d
1− e

·N)− (1 + 4) ·N ·Q (6)

Using definition IV.1 and equation 6, the in-practice
scalability of the line network is

N =
r ·X

3·L·d
1−e + 5 ·Q

(7)

Let us consider a reasonable realistic instantiation of the
above. We assume r = 10 Mbps, number of transceivers X
= 4, L = 260B voice packets at 6.25 pps which, including
about 80B worth of IP, subnet and PHY headers amounts to
approximately 17 kbps, d = 10%, e = 0.05, and Q = 206B
LSUs every 5 seconds = 329.6 bps.

Substituting in equation 7, we have N = 5701. That is, a
line network with the above parameters can scale to 5701
nodes, even though, per the Gupta-Kumar result [4] it is
asymptotically unscalable. Even with only one transceiver,
it scales to more than 1000 nodes. We made pessimistic
assumptions (only four frequencies, only 10 Mbps radios,
and all-informed multicast), so in general this number will
be even higher. This simple exercise demonstrates how a
network may be asymptotically unscalable and at the same
time adequately scalable in practice. Our ongoing work,
beyond the scope of this paper, extends such results to other
network types such as grid, random, etc. as well.

V. CONCLUDING REMARKS

We have shown that the well-known asymptotic scalability
results from Gupta-Kumar[4] have limited relevance to the
scalability of real military systems, for two broad classes of
reasons. First, these results make certain assumptions which
are not likely to be true for military networks. Specifically,
they assume that the traffic distribution over number of hops
is uniform. In contrast, our analysis of the traffic distribution
of the FCS BCT under two scenarios shows that the traffic
is more likely to be power law distributed with an exponent
between 2 and 3. Based on another asymptotic result [10],
such a distribution would result in MANET scalability even
in the asymptotic sense.

Second, asymptotic analysis does not answer the question
of whether MANETs – regardless of the traffic assumption
– can scale to sizes of most interest to the military, namely
brigade-sized networks (1000 - 5000 nodes). We introduce
the notion of in-practice scalability as a formal way of
studying finite-sized network behavior in the non-asymptotic
sense. While asymptotic scalability considers generic ques-
tions (“Does network X scale?”), in-practice scalability
considers the specific (“How many nodes does does network
X scale to?”). An analysis of the in-practice scalability of
a line network (representing a convoy for example) with
realistic parameters and an aggressive, non-power-law traffic

model (all-node multicast) still gives a conservative estimate
of scalability to 5700 nodes in practice.

Thus, MANETs in general may well be adequately scal-
able in practice even if they are asymptotically unscalable,
and military MANETs may also even be asymptotically
scalable by virtue of their traffic characteristics.

Much work needs to be done to make MANETs scale to
brigade-sized networks, particularly in the domain of control
overhead, and good engineering to make a system work as
designed. We also need to understand in-practice scalability
and military traffic better, and experiment with large-scale
MANETs. However, as we have shown in this paper, the
results of Gupta and Kumar [4], “negative” as they may
be, do not by themselves weaken our chances of building
MANETs that are sufficiently scalable to military needs.4
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